

Essential MATLAB
for Engineers and Scientists

Essential MATLAB
for Engineers and Scientists

Seventh Edition

Brian D. Hahn

Daniel T. Valentine

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
525 B Street, Suite 1800, San Diego, CA 92101-4495, United States
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom
125, London Wall, EC2Y, 5AS, United Kingdom

Copyright © 2019, 2017, 2013, 2010 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.
Copyright © 2007, 2006, 2002 Brian D. Hahn and Daniel T. Valentine. Published by Elsevier Ltd.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission.
The MathWorks does not warrant the accuracy of the text or exercises in this book.
This book’s use or discussion of MATLAB® software or related products does not constitute endorsement
or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the
MATLAB® software.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may
also complete your request online via the Elsevier homepage (http://www.elsevier.com), by selecting
“Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-08-102997-8

For information on all Academic Press publications
visit our website at https://www.elsevierdirect.com

Publisher: Katey Birtcher
Acquisition Editor: Steve Merken
Editorial Project Manager: Katerina Zaliva
Production Project Manager: Nilesh Kumar Shah
Designer: Matthew Limbert

Typeset by VTeX

mailto:permissions@elsevier.com
http://www.elsevier.com
https://www.elsevierdirect.com

Preface

The main reason for a seventh edition of Essential MATLAB for Engineers and
Scientists is to keep up with MATLAB, now in its latest version (9.5 Version
R2018b). Like the previous editions, this one presents MATLAB as a problem-
solving tool for professionals in science and engineering, as well as students in
those fields, who have no prior knowledge of computer programming.

In keeping with the late Brian D. Hahn’s objectives in previous editions, the
seventh edition adopts an informal, tutorial style for its “teach-yourself” ap-
proach, which invites readers to experiment with MATLAB as a way of discov-
ering how it works. It assumes that readers have never used this tool in their
technical problem solving.

MATLAB, which stands for “Matrix Laboratory,” is based on the concept of
the matrix. Because readers may be unfamiliar with matrices, ideas and con-
structs are developed gradually, as the context requires. The primary audience
for Essential MATLAB is scientists and engineers, and for that reason certain ex-
amples require some first-year college math, particularly in Part 2. However,
these examples are self-contained and can be skipped without detracting from
the development of readers’ programming skills.

MATLAB can be used in two distinct modes. One, in keeping the modern-age
craving for instant gratification, offers immediate execution of statements (or
groups of statements) in the Command Window. The other, for the more pa-
tient, offers conventional programming by means of script files. Both modes
are put to good use here: The former encouraging cut and paste to take full
advantage of Windows’ interactive environment. The latter stressing program-
ming principles and algorithm development through structure plans.

Although most of MATLAB’s basic (“essential”) features are covered, this book
is neither an exhaustive nor a systematic reference. This would not be in keep-
ing with its informal style. For example, constructs such as for and if are not
always treated, initially, in their general form, as is common in many texts, but
are gradually introduced in discussions where they fit naturally. Even so, they
are treated thoroughly here, unlike in other texts that deal with them only su- xv

xvi Preface

perficially. For the curious, helpful syntax and function quick references can be
found in the appendices.

Essential MATLAB is meant to be used in conjunction with the MATLAB soft-
ware. The reader is expected to have the software at hand in order to work
through the exercises and thus discover how MATLAB does what it is com-
manded to do. Learning any tool is possible only through hands-on expe-
rience. This is particularly true with computing tools, which produce correct
answers only when the commands they are given and the accompanying data
input are correct and accurate.

ACKNOWLEDGMENTS

I would like to thank Mary, Clara, Zoe Rae and Zach T. for their support and en-
couragement. I dedicate the seventh edition of Essential MATLAB for Engineers
and Scientists to them.

Daniel T. Valentine

1PART

Essentials

Part 1 concerns those aspects of MATLAB that you need to know in order to
come to grips with MATLAB’s essentials and those of technical computing. Be-
cause this book is a tutorial, you are encouraged to use MATLAB extensively
while you go through the text.

CHAPTER 1

Introduction

CONTENTS

Using MATLAB . 5
Arithmetic 6
Variables 7
Mathematical
functions 8
Functions and
commands 8
Vectors 9
Linear equations.... 11
Tutorials and demos 12

The desktop 13
Using the Editor and
running a script 14
Help, Publish and
View 16
Symbolics in live
scripts 19
APPS 20
Additional features . 22

Sample program 24
Cut and paste 24
Saving a program:
Script files 26
Current directory 27
Running a script from
the Current Folder
browser 28
A program in action 28

Summary 29

Exercises 30

Supplementary
material 30

THE OBJECTIVES OF THIS CHAPTER ARE:

■ To enable you to use some simple MATLAB commands from the Com-
mand Window.

■ To examine various MATLAB desktop and editing features.
■ To learn some of the new features of the MATLAB R2018b Desktop.
■ To learn to write scripts in the Editor and Run them from the Editor.
■ To learn some of the new features associated with the tabs (in particular,

the PUBLISH and APPS features).

MATLAB is a powerful technical computing system for handling scientific and
engineering calculations. The name MATLAB stands for Matrix Laboratory, be-
cause the system was designed to make matrix computations particularly easy.
A matrix is an array of numbers organized in m rows and n columns. An exam-
ple is the following m × n = 2 × 3 array:

A =
(

1 3 5
2 4 6

)

Any one of the elements in a matrix can be accessed by using the row and
column indices that identify its location. The elements in this example are ac-
cessed as follows: A(1,1) = 1, A(1,2) = 3, A(1,3) = 5, A(2,1) = 2, A(2,2) = 4,
A(2,3) = 6. The first index identifies the row number counted from top to bot-
tom; the second index is the column number counted from left to right. This is
the convention used in MATLAB to locate information in a matrix. A computer
is useful because it can do numerous computations quickly, so operating on
large numerical data sets listed in tables or matrices (or arrays) of rows and
columns is quite efficient.

This book assumes that you are an engineer, a scientist or an undergraduate
student majoring in a STEM (science, technology, engineering and mathemat-
ics) field. Hence, it is assumed that students and practitioners in STEM have
been introduced to matrices in their mathematics courses prior to entering a
college or university. On the other hand this book assumes that you have never
used MATLAB to solve engineering or scientific problems and are interested in

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00007-5
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

3

https://doi.org/10.1016/B978-0-08-102997-8.00007-5

4 CHAPTER 1: Introduction

discovering the technical computing capabilities of this tool. Hence, it is also
assumed that you can find your way around the keyboard and know your op-
erating system (e.g., Windows, UNIX or MAC-OS). Some experience using a
computer is expected, e.g., doing word processing, doing basic text editing, etc.

One of the many things you will like about MATLAB (and that distinguishes
it from many other computer programming systems, such as C++ and Java) is
that you can use it interactively. This means you type some commands at the
special MATLAB prompt and get results immediately. The problems solved in
this way can be very simple, like finding a square root, or very complicated, like
finding the solution to a system of differential equations. For many technical
problems, you enter only one or two commands—MATLAB does most of the
work for you.

There are three essential requirements for successful MATLAB applications:

■ You must learn the exact rules for writing MATLAB statements and using
MATLAB utilities.

■ You must know the mathematics associated with the problem you want
to solve.

■ You must develop a logical plan of attack—the algorithm—for solving a
particular problem.

This chapter is devoted mainly to the first requirement: learning some basic
MATLAB rules. Computer programming is the process of writing a collection
of instructions that performs a specific task when executed by a computer. In
this book you are introduced to programming by using some of the capabilities
of MATLAB to do technical computing.

With experience, you will be able to design, develop and implement compu-
tational and graphical tools to do relatively complex science and engineering
problems. You will be able to adjust the look of MATLAB, modify the way you
interact with it, and develop a toolbox of your own that helps you solve prob-
lems of interest. In other words, you can, with significant experience, customize
your MATLAB working environment.

In the rest of this chapter we will look at some simple examples. Don’t be
concerned about understanding exactly what is happening. Understanding will
come with the work you need to do in later chapters. It is very important for
you to practice with MATLAB to learn how it works. Once you have grasped
the basic rules in this chapter, you will be prepared to master many of those
presented in the next chapter and in the Help files provided with MATLAB. This
will help you go on to solve more interesting and substantial problems. In the
last section of this chapter you will take a quick tour of the MATLAB desktop.

1.1 Using MATLAB 5

FIGURE 1.1
MATLAB desktop illustrating the Home task bar (version 2018b).

1.1 USING MATLAB

Either MATLAB must be installed on your computer or you must have access
to a network where it is available. Throughout this book the latest version at
the time of writing is assumed (version R2018b).

To start from Windows, double-click the MATLAB icon on your Windows desk-
top. To start from UNIX, type matlab at the operating system prompt. To start
from MAC-OS open X11 (i.e., open an X-terminal window), then type matlab
at the prompt. The MATLAB desktop opens as shown in Fig. 1.1. The window
in the desktop that concerns us for now is the Command Window, where the
special >> prompt appears. This prompt means that MATLAB is waiting for a
command. You can quit at any time with one of the following ways:

■ Click the X (close box) in the upper right-hand corner of the MATLAB
desktop.

■ Type quit or exit at the Command Window prompt followed by pressing
the ‘enter’ key.

Starting MATLAB automatically creates a folder named MATLAB in the user’s
Documents Folder. This feature is quite convenient because it is the default
working folder. It is in this folder that anything saved from the Command
Window will be saved. Now you can experiment with MATLAB in the Com-
mand Window. If necessary, make the Command Window active by placing
the cursor in the Command Window and left-clicking the mouse button any-
where inside its border.

6 CHAPTER 1: Introduction

1.1.1 Arithmetic

Since we have experience doing arithmetic, we want to examine if MATLAB
does it correctly. This is a required step to gain confidence in any tool and in
our ability to use it.

Type 2+3 after the >> prompt, followed by Enter (press the Enter key) as in-
dicated by <Enter>:

>> 2+3 <Enter>

Commands are only carried out when you enter them. The answer in this case
is, of course, 5. Next try

>> 3-2 <Enter>
>> 2*3 <Enter>
>> 1/2 <Enter>
>> 23 <Enter>
>> 2\11 <Enter>

What about (1)/(2) and (2)^(3)? Can you figure out what the symbols *, /,
and ^ mean? Yes, they are multiplication, division and exponentiation. The
backslash means the denominator is to the left of the symbol and the numer-
ator is to the right; the result for the last command is 5.5. This operation is
equivalent to 11/2.

Now enter the following commands:

>> 2 .* 3 <Enter>
>> 1 ./ 2 <Enter>
>> 2 .ˆ 3 <Enter>

A period in front of the *, /, and ^, respectively, does not change the results
because the multiplication, division, and exponentiation is done with single
numbers. (An explanation for the need for these symbols is provided later
when we deal with arrays of numbers.)

Here are hints on creating and editing command lines:

■ The line with the >> prompt is called the command line.
■ You can edit a MATLAB command before pressing Enter by using various

combinations of the Backspace, Left-arrow, Right-arrow, and Del keys.
This helpful feature is called command-line editing.

■ You can select (and edit) commands you have entered using Up-arrow
and Down-arrow. Remember to press Enter to have the command carried
out (i.e., to run or to execute the command).

1.1 Using MATLAB 7

■ MATLAB has a useful editing feature called smart recall. Just type the first
few characters of the command you want to recall. For example, type the
characters 2* and press the Up-arrow key—this recalls the most recent
command starting with 2*.

How do you think MATLAB would handle 0/1 and 1/0? Try it. If you insist
on using ∞ in a calculation, which you may legitimately wish to do, type the
symbol Inf (short for infinity). Try 13+Inf and 29/Inf.

Another special value that you may meet is NaN, which stands for Not-a-
Number. It is the answer to calculations like 0/0.

1.1.2 Variables

Now we will assign values to variables to do arithmetic operations with the
variables. First enter the command (statement in programming jargon) a = 2.
The MATLAB command line should look like this:

>> a = 2 <Enter>

The a is a variable. This statement assigns the value of 2 to a. (Note that this
value is displayed immediately after the statement is executed.) Now try en-
tering the statement a = a + 7 followed on a new line by a = a * 10. Do you
agree with the final value of a? Do we agree that it is 90?

Now enter the statement

>> b = 3; <Enter>

The semicolon (;) prevents the value of b from being displayed. However, b still
has the value 3, as you can see by entering without a semicolon:

>> b <Enter>

Assign any values you like to two variables x and y. Now see if you can assign
the sum of x and y to a third variable z in a single statement. One way of doing
this is

>> x = 2; y = 3; <Enter>
>> z = x + y <Enter>

Notice that, in addition to doing the arithmetic with variables with assigned
values, several commands separated by semicolons (or commas) can be put
on one line.

8 CHAPTER 1: Introduction

1.1.3 Mathematical functions

MATLAB has all of the usual mathematical functions found on a scientific-
electronic calculator, like sin, cos, and log (meaning the natural logarithm).
See Appendix C for many more examples.

■ Find
√

π with the command sqrt(pi). The answer should be 1.7725.
Note that MATLAB knows the value of pi because it is one of its many
built-in functions.

■ Trigonometric functions like sin(x) expect the argument x to be in
radians. Multiply degrees by π/180 to get radians. For example, use
MATLAB to calculate sin(90◦). The answer should be 1 (sin(90*pi/180)).

■ The exponential function ex is computed in MATLAB as exp(x). Use this
information to find e and 1/e (2.7183 and 0.3679).

Because of the numerous built-in functions like pi or sin, care must be taken
in the naming of user-defined variables. Names should not duplicate those
of built-in functions without good reason. This problem can be illustrated as
follows:

>> pi = 4 <Enter>
>> sqrt(pi) <Enter>
>> whos <Enter>
>> clear pi <Enter>
>> whos <Enter>
>> sqrt(pi) <Enter>
>> clear <Enter>
>> whos <Enter>

Note that clear executed by itself clears all local variables in the workspace (the
workspace is where the local variables defined on command lines are stored;
see the Workspace pane on the right side of the default desktop); >> clear pi
clears the locally defined variable pi. In other words, if you decide to redefine
a built-in function or command, the new value is used! The command whos
is executed to determine the list of local variables or commands presently in
the workspace. The first execution of the command pi=4 in the above exam-
ple displays your redefinition of the built-in pi: a 1-by-1 (or 1x1) double array,
which means this data type was created when pi was assigned a number.

1.1.4 Functions and commands

MATLAB has numerous general functions. Try date and calendar for starters.
It also has numerous commands, such as clc (for clear command window). help
is one you will use a lot (see below). The difference between functions and
commands is that functions usually return with a value (e.g., the date), while

1.1 Using MATLAB 9

commands tend to change the environment in some way (e.g., clearing the
screen or saving some statements to the workspace).

1.1.5 Vectors

Variables such as a and b that were used in Section 1.1.2 above are called scalars;
they are single-valued. MATLAB also handles vectors (generally referred to as
arrays), which are the key to many of its powerful features. The easiest way
of defining a vector where the elements (components) increase by the same
amount is with a statement like

>> x = 0 : 10; <Enter>

The symbol between the 0 and the 10 is a colon (:). There is no need to leave
a space on either side of it, except to make it more readable. Enter x to check
that x is a vector; it is a row vector—consisting of 1 row and 11 columns. Type
the following command to verify that this is the case:

>> size(x) <Enter>

Part of the real power of MATLAB is illustrated by the fact that other vectors
can now be defined (or created) in terms of the just defined vector x. Try

>> y = 2 .* x <Enter>
>> w = y ./ x <Enter>

and

>> z = sin(x) <Enter>

(no semicolons). Note that the first command line creates a vector y by multi-
plying each element of x by the factor 2. The second command line is an array
operation, creating a vector w by taking each element of y and dividing it by
the corresponding element of x. Since each element of y is two times the cor-
responding element of x, the vector w is a row vector of 11 elements all equal
to 2. Finally, z is a vector with sin(x) as its elements.

To draw a reasonably nice graph of sin(x), simply enter the following com-
mands:

>> x = 0 : 0.1 : 10; <Enter>
>> y = sin(x); <Enter>
>> plot(x,y), grid <Enter>

10 CHAPTER 1: Introduction

FIGURE 1.2
Figure window.

The graph appears in a separate figure window. To draw the graph of the sine
function illustrated in Fig. 1.2 replace the last line above with

>> plot(x,y,’-rs’,’LineWidth’,2,’MarkerEdgeColor’,’k’,’MarkerSize’,5),grid
<Enter>

>> xlabel(’ x ’), ylabel(’ sin(x) ’) <Enter>
>> whitebg(’y’) <Enter>

You can select the Command Window or figure windows by clicking anywhere
inside them. The Windows pull-down menus can be used in any of them.

Note that the first command line above has three numbers after the equal sign.
When three numbers are separated by two colons in this way, the middle num-
ber is the increment. The increment of 0.1 was selected to give a reasonably
smooth graph. The command grid following the comma in the last command
line adds a grid to the graph.

Modifying the plot function as illustrated above, of the many options available
within this function, four were selected. A comma was added after the variable
y followed by ’-rs’. This selects a solid red line (-r) to connect the points at which
the sine is computed; they are surrounded by square (s) markers in the figure.
The line width is increased to 2 and the marker edge color is black (k) with
size 5. Axis labels and the background color were changed with the statements
following the plot command. (Additional changes in background color, object
colors, etc., can be made with the figure properties editor; it can be found in

1.1 Using MATLAB 11

the pull-down menu under Edit in the figure toolbar. Many of the colors in the
figures in this book were modified with the figure-editing tools.)

If you want to see more cycles of the sine graph, use command-line editing to
change sin(x) to sin(2*x).

Try drawing the graph of tan(x) over the same domain. You may find aspects
of your graph surprising. To help examine this function you can improve the
graph by using the command axis([0 10 -10 10]) as follows:

>> x = 1:0.1:10; <Enter>
>> z = tan(x); <Enter>
>> plot(x,z),axis([0 10 -10 10]) <Enter>

An alternative way to examine mathematical functions graphically is to use the
following command:

>> ezplot(’tan(x)’) <Enter>

The apostrophes around the function tan(x) are important in the ezplot com-
mand. Note that the default domain of x in ezplot is not 0 to 10.

A useful Command Window editing feature is tab completion: Type the first
few letters of a MATLAB name and then press Tab. If the name is unique, it is
automatically completed. If it is not unique, press Tab a second time to see all
the possibilities. Try by typing ta at the command line followed by Tab twice.

1.1.6 Linear equations

Systems of linear equations are very important in engineering and scientific
analysis. A simple example is finding the solution to two simultaneous equa-
tions:

x + 2y = 4

2x − y = 3

Here are two approaches to the solution.

Matrix method. Type the following commands (exactly as they are):

>> a = [1 2; 2 -1]; <Enter >

>> b = [4; 3]; <Enter >

>> x = a\b <Enter >

The result is

12 CHAPTER 1: Introduction

x =

2

1

i.e., x = 2, y = 1.

Built-in solve function. Type the following commands (exactly as they are):

>> syms x y; [x,y] = solve(x+2*y-4, 2*x - y-3) <Enter >

>> whos <Enter >

>> x = double(x), y=double(y) <Enter >

>> whos <Enter >

The function double converts x and y from symbolic objects (another data type
in MATLAB) to double arrays (i.e., the numerical-variable data type associated
with an assigned number).

To check your results, after executing either approach, type the following com-
mands (exactly as they are):

>> x + 2*y % should give ans = 4 <Enter >

>> 2*x - y % should give ans = 3 <Enter >

The % symbol is a flag that indicates all information to the right is not part of
the command but a comment. (We will examine the need for comments when
we learn to develop coded programs of command lines later on.)

1.1.7 Tutorials and demos

If you want a spectacular sample of what MATLAB has to offer, type the com-
mand demo on the command line. After entering this command the Help docu-
mentation is opened at MATLAB Examples (see Fig. 1.3). Left-click on “Getting
Started”. This points you to the list of tutorials and demonstrations of MATLAB
applications that are at your disposal. Click on any of the other topics to learn
more about the wealth of capabilities of MATLAB. You may wish to review the
tutorials appropriate to the topics you are examining as part of your technical
computing needs. Click on “View more MATLAB examples” and scroll down to
“Animations” and to “Images” to learn more about the features of MATLAB to
produce motion pictures as a way to analyze various unsteady problems. New
features are continually added to MATLAB; all new features are reported on the
MathWorks website. MathWorks is the company that sells and supports the
continued development of enhancements for MATLAB and SIMULINK and a
variety of toolboxes that they offer to the science, engineering, technology and
mathematics communities.

1.2 The desktop 13

FIGURE 1.3
The Help documentation on MATLAB Examples.

1.2 THE DESKTOP

A very useful feature of MATLAB R2018a is the fact that when you first open
it, it creates the folder named MATLAB (if it does not already exist) in your
Documents folder. The first time it does this, there are no items in the folder
and, hence, the Current Folder panel will be empty. This new folder in your
Documents is the default working folder where all the files you create are saved.
The location of this folder is given in the first toolbar above the Command
Window. The location is C:\Users\Clara\Documents\MATLAB. This format of the
location was determined by pointing and left-clicking the mouse in the line
just above the Command Window.

Let us examine the Desktop from the top down. On the left side of the top line
you should see the name of the version of MATLAB running. In this case it is
MATLAB R2018a. On the right side of the top line are three buttons. They are
the underscore button, which allows you to minimize the size of the Desk-
top window, the rectangle button, which allows you to maximize the size
of the Desktop, and the × button, which allows you to close MATLAB (see
Fig. 1.4).

On the next line of the Desktop there are three tabs on the left side. The first
tap is most forward in the figure and, hence, the Home toolbar is displayed
(the tabs and the toolbars associated with the tabs are the main new features
of this release of MATLAB). If you are already familiar with a previous release
of MATLAB, you will find that these new features enhance significantly the use
of MATLAB. In addition, all previously developed tools operate exactly as they

14 CHAPTER 1: Introduction

FIGURE 1.4
New Desktop Toolbar on MATLAB 2018a.

FIGURE 1.5
Editor opened in default location; it is in the center of the Desktop.

did in previous releases of MATLAB. The other two tabs are PLOTS and APPS.
These features allow you to access tools within MATLAB by pointing and click-
ing and, hence, enhance the utilization of tools and toolboxes available within
MATLAB. In addition, the APPS environment allows the user to create their
own applications (or APPS).

1.2.1 Using the Editor and running a script

Point and click on the New Script icon on the left most side of the Home
toolbar. Doing this opens the editor in the center of the Desktop as shown in
Fig. 1.5. Note that three new tabs appear and that the tab that is visible is the
Editor tab that is connected with the Editor. The other two tabs are Publish
and View. The latter are useful when creating notebooks or other documents
connected with your technical computing work. The application of these tools
will be illustrated by an example later in this text.

Let us first consider using the Editor. Type into the Editor the following script:

1.2 The desktop 15

% Example of one of the matrix inversion methods available in MATLAB
clear;clc
% Let us consider the following arbitrarily selected matrix:
A =magic(3)
% Let us evaluate its inverse as follows:
AI = inv(A)
% Let us check that it is an inverse:
IPredicted = A * AI
% This is the exact unitary matrix:
IM = eye(3)
% The is the difference between the exact and predict unitary
% matrix:
difference = IPredicted - IM
for m = 1:3

for n = 1:3
if difference(m,n) < eps;

IPredicted(m,n) = IM(m,n);
end

end
end
IPredicted
IPredicted == IM

Then click on the Run button just under the tab named View. The first time
the script is executed you are asked to name the file. The name used in this
example is ExA1_1.m. If all lines are typed correctly (except the lines beginning
with the symbol ’%’, because they are comments that have nothing to do with
the sequence of commands in the script except that they help the reader un-
derstand what the script does), what shows up in the Command Window is as
follows:

A =
8 1 6
3 5 7
4 9 2

AI =
0.1472 -0.1444 0.0639

-0.0611 0.0222 0.1056
-0.0194 0.1889 -0.1028

IPredicted =
1.0000 0 -0.0000

-0.0000 1.0000 0
0.0000 0 1.0000

IM =

16 CHAPTER 1: Introduction

1 0 0
0 1 0
0 0 1

difference =
1.0e-15 *

0 0 -0.1110
-0.0278 0 0
0.0694 0 0

IPredicted =
1 0 0
0 1 0
0 0 1

ans =
1 1 1
1 1 1
1 1 1

The IPredicted matrix is supposed to be the identity matrix, IM. The matrix
IPredicted was determined by multiplying the matrix A by its numerically
computed inverse, AI. The last print out of IPredicted is a modification of
the original matrix; it was changed to the elements of the IM matrix if the
difference between a predicted and an actual element of IM was less than
eps = 2.2204e − 16. Since the result is identical to the identity matrix, this
shows that the inverse was computed correctly (at least to within the compu-
tational error of the computing environment, i.e., 0 < eps). This conclusion
is a result of the fact that the ans in the above example produced the logical
result of 1 (or true) for all entries in the adjusted IPredicted matrix as logically
compared with the corresponding entries in IM.

At this point in the exercise the Desktop looks like Fig. 1.6. The name of the
file is ExA1_1.m. It appears in the Current Folder and it also appears in the
Command History. Note that the Workspace is populated with the variables
created by this script.

This concludes the introduction of the most important tools needed for most
of the exercises in Essential MATLAB (i.e., in this text). In the next section we
examine an example of some of the other new features of MATLAB R2018a.

1.2.2 Help, Publish and View

Publish is an easy way to create notebooks or other documents in html format.
The conversion of the information typed into an M-file is published into a doc-
ument that looks like the new Help environment. To open the help documents
go to the top of the Desktop to the question mark. Left click on the question
mark ?. The Help window opens up. Left click on the topic “MATLAB” to open
up the window illustrated in Fig. 1.7. This also illustrates the new format of

1.2 The desktop 17

FIGURE 1.6
Sample script created and executed in the first example of this section.

FIGURE 1.7
Illustration of one of the pages in the online documentation for MATLAB.

the search able documentation available within MATLAB R2018a. We want to
compare this documentation with the kind you can PUBLISH yourself. To il-
lustrate how easy it is to create documents like the MATLAB documents, let us
consider the following simple example.

Click the New Script button to open up the editor (or type edit after the
command prompt in the Command Window followed by tapping the enter
key). The Editor tab is in the most forward position on the main taskbar.

18 CHAPTER 1: Introduction

Place the cursor on PUBLISH and left click on the mouse. This brings the
PUBLISH toolbar forward. Left click Section with Title. Replace SECTION TITLE
with PUBLISHING example. Next, replace DESCRIPTIVE TEXT with

%%
% This is an example to illustrate how easy it is to create a document
% in the PUBLISH environment.
%
% (1) This is an illustration of a formula created with a LaTeX command:
%

Next, click on � Inline LaTeX located in the “Insert Inline Markup” group. This
leads to the addition of the equation $x^2+e^{\pi i}$. Following this equation
add the text shown in the final script file shown below that ends with “clicked:”.
This is followed by a blank line and a command script; this command script
is included to illustrate how MATLAB commands can be incorporated into
published documents.

%%
% This is an example to illustrate how easy it is to create a document
% in the PUBLISH environment.
%
% (1) This is an illustration of a formula created with a LaTeX command:
%
%%
% $x^2+e^{\pi i}$
%
% (2) This is an illustration of how you can incorporate a MATLAB script
% in the document that is run when the Publish button below and to the
% right of View is clicked:

% Earth picture
load earth
image(X); colormap(map);
axis image

The final step is to left-click on Publish, which is just to the right and below
View. The first window to appear is the one asking you to save the M-file. The
name used in this example is ExamplePub1.m. After it appears in the Current
Folder it is executed. A folder named html is automatically created and it con-
tains the html document just created. The document is illustrated in Fig. 1.8.

Finally, the VIEW tab brings up a toolbar that allows you to change the con-
figuration of the Editor window. From the authors point of view, the default
Editor environment is fine as is especially for users who are beginning to use
MATLAB for technical computing. Customizing your working environment is

1.2 The desktop 19

FIGURE 1.8
Sample document created in the Publish environment.

certainly possible in MATLAB. However, it is useful to learn how to deal with
the default environment before deciding what needs to be changed to help
satisfy your own requirements for using MATLAB.

1.2.3 Symbolics in live scripts

The Symbolic Math Toolbox is a useful tool to help you do symbolic math-
ematical analysis. It is convenient and the results are more presentable if we
use this toolbox within a Live-Script environment. The portions of this type of
file in which code is entered is essentially the same as what would be typed
in the Work Space or in an ordinary script file. However, the display is much
more presentable than the output displayed in the Work Space window of the
Desktop. This will be evident by the examples reported in this section.

In the first set of examples we show how to differentiate a function and, sub-
sequently, integrate a function using the Symbolic Tools. First let us open a
Live-Editor file by clicking on the Live Editor icon below Home in the Home
tool bar. We get the Live Editor in the center of the desktop as shown in Fig. 1.9.
The gray box at the top of the file to be created is where the MATLAB scripts are
typed into this editor.

20 CHAPTER 1: Introduction

FIGURE 1.9
The Live Editor window.

The simple examples in Fig. 1.10 illustrate the application of Symbolic Tools
to do calculus. The examples in Fig. 1.11 illustrates the power of tools within
MATLAB to study the shapes of functions that you may encounter in your work.
One is the sech2(x) function which plays an important role in nonlinear wave
theory. The second is the complete elliptic integral of the first kind, viz.,

K(m) =
∫ π/2

0

1√
1 − m2 sin2 θ

dθ

where m = π/4. This integral plays an important role in potential theory. This
function was selected as an example because the second author encountered
it in his work. The purpose of showing this is to illustrate how easy it is to
explore some of the features of relatively complicated functions that arise in
computational analysis of engineering problems. As an exercise, open up the
help documents to find other functions, tutorials, and examples. The help doc-
umentation has improved tremendously over the years since MATLAB was first
introduced.

1.2.4 APPS

Press the APPS tab to the left of the EDITOR tab to see the applications that
came with your MATLAB suite of tools. There are a number of other APPS
available from MathWorks. In addition, there is a capability for you to create
your own APPS. Hence, if there is anything that we learn from our first expe-
riences with MATLAB is that there is a lot to learn (a lifelong experience of
learning) because of the wealth of technology incorporated in this technical
computing environment. The fact that you can develop your own toolboxes,

1.2 The desktop 21

FIGURE 1.10
Simple examples of symbolic analysis of calculus problems.

FIGURE 1.11
Simple examples of symbolic analysis of various important functions that arise in STEM fields.

22 CHAPTER 1: Introduction

FIGURE 1.12
The Mexican hat.

your own APPS and you can customize your working environment (desktop
arrangement, color backgrounds, fonts, graphical user interfaces and so on)
provides real opportunities and useful experience in creating designs, creating
useful tools and documenting your work.

1.2.5 Additional features

MATLAB has other good things. For example, you can generate a 10-by-10 (or
10 × 10) magic square by executing the command magic(10), where the rows,
columns, and main diagonal add up to the same value. Try it. In general, an
n × n magic square has a row and column sum of n(n2 + 1)/2.

You can even get a contour plot of the elements of a magic square. MATLAB
pretends that the elements in the square are heights above sea level of points
on a map, and draws the contour lines. contour(magic(32)) looks interesting.

If you want to see the famous Mexican hat (Fig. 1.12), enter the following four
lines (be careful not to make any typing errors):

>> [x y] = meshgrid(-8 : 0.5 : 8); <Enter>
>> r = sqrt(x.^2 + y.^2) + eps; <Enter>
>> z = sin(r) ./ r; <Enter>
>> mesh(z); <Enter>

surf(z) generates a faceted (tiled) view of the surface. surfc(z) or meshc(z)

draws a 2D contour plot under the surface. The command

1.2 The desktop 23

>> surf(z), shading flat <Enter>

produces a nice picture by removing the grid lines.

The following animation is an extension of the Mexican hat graphic in
Fig. 1.12. It uses a for loop that repeats the calculation from n=−3 to n=3

in increments of 0.05. It begins with a for n=−3:0.05:3 command and ends
with an end command and is one of the most important constructs in program-
ming. The execution of the commands between the for and end statements
repeat 121 times in this example. The pause(0.05) puts a time delay of 0.05 sec-
onds in the for loop to slow the animation down, so the picture changes every
0.05 seconds until the end of the computation.

>> [x y]=meshgrid(-8:0.5:8); <Enter>
>> r=sqrt(x.^2+y.^2)+eps; <Enter>
>> for n=-3:0.05:3; <Enter>
>> z=sin(r.*n)./r; <Enter>
>> surf(z), view(-37, 38), axis([0,40,0,40,-4,4]); <Enter>
>> pause(0.05) <Enter>
>> end <Enter>

You can examine sound with MATLAB in any number of ways. One way is to
listen to the signal. If your PC has a speaker, try

>> load handel <Enter>
>> sound(y,Fs) <Enter>

for a snatch of Handel’s Hallelujah Chorus. For different sounds try loading
chirp, gong, laughter, splat, and train. You have to run sound(y,Fs) for each
one.

If you want to see a view of the Earth from space, try

>> load earth <Enter>
>> image(X); colormap(map) <Enter>
>> axis image <Enter>

To enter the matrix presented at the beginning of this chapter into MATLAB,
use the following command:

>> A = [1 3 5; 2 4 6] <Enter>

On the next line after the command prompt, type A(2,3) to pluck the number
from the second row, third column.

24 CHAPTER 1: Introduction

There are a few humorous functions in MATLAB. Try why (why not?) Then
try why(2) twice. To see the MATLAB code that does this, type the following
command:

>> edit why <Enter>

Once you have looked at this file, close it via the pull-down menu by clicking
File at the top of the Editor desktop window and then Close Editor; do not
save the file, in case you accidently typed something and modified it.

The edit command will be used soon to illustrate the creation of an M-file like
why.m (the name of the file executed by the command why). You will create an
M-file after we go over some of the basic features of the MATLAB desktop. More
details on creating programs in the MATLAB environment will be explained in
Chapter 2.

1.3 SAMPLE PROGRAM

In Section 1.1 we saw some simple examples of how to use MATLAB by en-
tering single commands or statements at the MATLAB prompt. However, you
might want to solve problems which MATLAB can’t do in one line, like find-
ing the roots of a quadratic equation (and taking all the special cases into
account). A collection of statements to solve such a problem is called a program.
In this section we look at the mechanics of writing and running two short pro-
grams, without bothering too much about how they work—explanations will
follow in the next chapter.

1.3.1 Cut and paste

Suppose you want to draw the graph of e−0.2x sin(x) over the domain 0 to 6π ,
as shown in Fig. 1.13. The Windows environment lends itself to nifty cut and
paste editing, which you would do well to master. Proceed as follows.

From the MATLAB desktop select File -> New -> Script, or click the new file
button on the desktop toolbar (you could also type edit in the Command
Window followed by Enter). This action opens an Untitled window in the Edi-
tor/Debugger. You can regard this for the time being as a ‘scratch pad’ in which
to write programs. Now type the following two lines in the Editor, exactly as
they appear here:

x = 0 : pi/20 : 6 * pi;
plot(x, exp(-0.2*x) .* sin(x), ’k’),grid

Incidentally, that is a dot (full stop, period) in front of the second * in the
second line—a more detailed explanation later! The additional argument ’k’

1.3 Sample program 25

FIGURE 1.13
e−0.2x sin(x).

for plot will draw a black graph, just to be different. Change ’k’ to ’r’ to
generate a red graph if you prefer.

Next, move the mouse pointer (which now looks like a very thin capital I) to
the left of the x in the first line. Keep the left mouse button down while moving
the mouse pointer to the end of the second line. This process is called dragging.
Both lines should be highlighted at this stage, probably in blue, to indicate
that they have been selected.

Select the Edit menu in the Editor window, and click on Copy (or just use
the keyboard shortcut Ctrl+C). This action copies the highlighted text to the
Windows clipboard, assuming that your operating system is Windows.

Now go back to the Command Window. Make sure the cursor is positioned
at the � prompt (click there if necessary). Select the Edit menu, and click
on Paste (or use the Ctrl+V shortcut). The contents of the clipboard will be
copied into the Command Window. To execute the two lines in the program,
press Enter. The graph should appear in a figure window.

This process, from highlighting (selecting) text in the Editor, to copying it into
the Command Window, is called ‘cut and paste’ (more correctly ‘copy and
paste’ here, since the original text is copied from the Editor, rather than being
cut from it). It’s well worth practicing until you have it right.

If you need to correct the program, go back to the Editor, click at the posi-
tion of the error (this moves the insertion point to the right place), make the
correction, and cut and paste again. Alternatively, you can use command-line
editing to correct mistakes. As yet another alternative, you can paste from the
Command History window (which incidentally goes back over many previous

26 CHAPTER 1: Introduction

sessions). To select multiple lines in the Command History window keep Ctrl
down while you click.

If you prefer, you can enter multiple lines directly in the Command Window.
To prevent the whole group from running until you have entered the last line
use Shift+Enter after each line until the last. Then press Enter to run all the
lines.

As another example, suppose you have $1000 saved in the bank. Interest is
compounded at the rate of 9 per cent per year. What will your bank balance be
after one year? Now, if you want to write a MATLAB program to find your new
balance, you must be able to do the problem yourself in principle. Even with
a relatively simple problem like this, it often helps first to write down a rough
structure plan:

1. Get the data (initial balance and interest rate) into MATLAB.
2. Calculate the interest (9 per cent of $1000, i.e., $90).
3. Add the interest to the balance ($90 + $1000, i.e., $1090).
4. Display the new balance.

Go back to the Editor. To clear out any previous text, select it as usual by drag-
ging (or use Ctrl+A), and press the Del key. By the way, to de-select highlighted
text, click anywhere outside the selection area. Enter the following program,
and then cut and paste it to the Command Window.

balance = 1000;
rate = 0.09;
interest = rate * balance;
balance = balance + interest;
disp(’New balance:’);
disp(balance);

When you press Enter to run it, you should get the following output in the
Command Window:

New balance:
1090

1.3.2 Saving a program: Script files

We have seen how to cut and paste between the Editor and the Command
Window in order to write and run MATLAB programs. Obviously you need to
save the program if you want to use it again later.

To save the contents of the Editor, select File -> Save from the Editor menubar.
A Save file as: dialogue box appears. Select a folder and enter a file name,

1.3 Sample program 27

which must have the extension .m, in the File name: box, e.g., junk.m. Click
on Save. The Editor window now has the title junk.m. If you make subsequent
changes to junk.m in the Editor, an asterisk appears next to its name at the top
of the Editor until you save the changes.

A MATLAB program saved from the Editor (or any ASCII text editor) with the
extension .m is called a script file, or simply a script. (MATLAB function files
also have the extension .m. We therefore refer to both script and function files
generally as M-files.) The special significance of a script file is that, if you enter
its name at the command-line prompt, MATLAB carries out each statement in
the script file as if it were entered at the prompt.

The rules for script file names are the same as those for MATLAB variable names
(see the next Chapter 2, Section 2.1).

As an example, save the compound interest program above in a script file under
the name compint.m. Then simply enter the name

compint

at the prompt in the Command Window (as soon as you hit Enter). The state-
ments in compint.m will be carried out exactly as if you had pasted them into
the Command Window. You have effectively created a new MATLAB com-
mand, viz., compint.

A script file may be listed in the Command Window with the command type,
e.g.,

type compint

(the extension .m may be omitted).

Script files provide a useful way of managing large programs which you do
not necessarily want to paste into the Command Window every time you run
them.

Current directory

When you run a script, you have to make sure that MATLAB’s current folder
(indicated in the toolbar just above the Current Folder) is set to the folder (or
directory) in which the script is saved. To change the current folder type the
path for the new current folder in the toolbar, or select a folder from the drop-
down list of previous working folders, or click on the browse button (it is the
first folder with the green arrow that is to the left of the field that indicates the
location of the Current Folder). Select a new location for saving and executing
files (e.g., if you create files for different courses, you may wish to save your
work in folders with the names or numbers of the courses that you are taking).

28 CHAPTER 1: Introduction

You can change the current folder from the command line with cd command,
e.g.,

cd \mystuff

The command cd by itself returns the name of the current directory or current
folder (as it is now called in the latest versions of MATLAB).

Running a script from the Current Folder browser

A handy way to run a script is as follows. Select the file in the Current Directory
browser. Right-click it. The context menu appears (context menus are a general
feature of the desktop). Select Run from the context menu. The results appear
in the Command Window. If you want to edit the script, select Open from the
context menu.

1.3.3 A program in action

We will now discuss in detail how the compound interest program works.

The MATLAB system is technically called an interpreter (as opposed to a com-
piler). This means that each statement presented to the command line is trans-
lated (interpreted) into language the computer understands better, and then
immediately carried out.

A fundamental concept in MATLAB is how numbers are stored in the com-
puter’s random access memory (RAM). If a MATLAB statement needs to store a
number, space in the RAM is set aside for it. You can think of this part of the
memory as a bank of boxes or memory locations, each of which can hold only
one number at a time. These memory locations are referred to by symbolic
names in MATLAB statements. So the statement

balance = 1000

allocates the number 1000 to the memory location named balance. Since the
contents of balance may be changed during a session it is called a variable.

The statements in our program are therefore interpreted by MATLAB as follows:

1. Put the number 1000 into variable balance.
2. Put the number 0.09 into variable rate.
3. Multiply the contents of rate by the contents of balance and put the

answer in interest.
4. Add the contents of balance to the contents of interest and put the

answer in balance.
5. Display (in the Command Window) the message given in single quotes.
6. Display the contents of balance.

Summary 29

It hardly seems necessary to stress this, but these interpreted statements are
carried out in order from the top down. When the program has finished running,
the variables used will have the following values:

balance : 1090
interest : 90
rate : 0.09

Note that the original value of balance (1000) is lost.

Try the following exercises:

1. Run the program as it stands.
2. Change the first statement in the program to read

balance = 2000;

Make sure that you understand what happens now when the program
runs.

3. Leave out the line

balance = balance + interest;

and re-run. Can you explain what happens?
4. Try to rewrite the program so that the original value of balance is not lost.

A number of questions have probably occurred to you by now, such as

■ What names may be used for variables?
■ How can numbers be represented?
■ What happens if a statement won’t fit on one line?
■ How can we organize the output more neatly?

These questions will be answered in the next chapter. However, before we write
any more complete programs there are some additional basic concepts which
need to be introduced. These concepts are introduced in the next chapter.

SUMMARY

■ MATLAB is a matrix-based computer system designed to assist in scientific
and engineering problem solving.

■ To use MATLAB, you enter commands and statements on the command
line in the Command Window. They are carried out immediately.

■ quit or exit terminates MATLAB.
■ clc clears the Command Window.

30 CHAPTER 1: Introduction

■ help and lookfor provide help.
■ plot draws an x-y graph in a figure window.
■ grid draws grid lines on a graph.

EXERCISES

1.1 Give values to variables a and b on the command line, e.g., a = 3 and
b = 5. Write some statements to find the sum, difference, product and
quotient of a and b.

1.2 In Section 1.2.5 of the text a script is given for an animation of the
Mexican hat problem. Type this into the editor, save it and execute it.
Once you finish debugging it and it executes successfully try modifying
it. (a) Change the maximum value of n from 3 to 4 and execute the
script. (b) Change the time delay in the pause function from 0.05 to
0.1. (c) Change the z=sin(r.*n)./r; command line to z=cos(r.*n);
and execute the script.

1.3 Assign a value to the variable x on the command line, e.g., x = 4 * pi^2.
What is the square root of x? What is the cosine of the square root of x?

1.4 Assign a value to the variable y on the command line as follows: y = -1.
What is the square root of y? Show that the answer is

ans =
0 + 1.0000i

Yes, MATLAB deals with complex numbers (not just real numbers).
Hence the symbol i should not be used as an index or as a variable
name. By default, it is equal to the square root of −1. (Also, when nec-
essary, j is used in MATLAB as a symbol for

√−1. Hence, it also should
not be used as an index or as a variable name.) Give an example of how
you have used complex numbers in your studies of mathematics and
the sciences up to this point in your education.

Solutions to many of the exercises are in Appendix D.

APPENDIX 1.A SUPPLEMENTARY MATERIAL

Supplementary material related to this chapter can be found online at https://
doi.org/10.1016/B978-0-08-102997-8.00007-5.

https://doi.org/10.1016/B978-0-08-102997-8.00007-5
https://doi.org/10.1016/B978-0-08-102997-8.00007-5

CHAPTER 2

MATLAB Fundamentals

CONTENTS

Variables 31
Case sensitivity 32

The workspace . 32
Adding commonly
used constants to
the workspace....... 33

Arrays: Vectors
and matrices.... 34
Initializing vectors:
Explicit lists 34
Initializing vectors:
The colon operator . 35
The linspace and
logspace functions . 36
Transposing vectors 37
Subscripts 37
Matrices............... 38
Capturing output ... 39
Structure plan 39

Vertical motion
under gravity.... 40

Operators,
expressions, and
statements 42
Numbers.............. 43
Data types 43
Arithmetic
operators 44
Operator
precedence 44
The colon operator . 45
The transpose
operator 46
Arithmetic
operations on
arrays 46

THE OBJECTIVE OF THIS CHAPTER IS TO INTRODUCE SOME
OF THE FUNDAMENTALS OF MATLAB PROGRAMMING, IN-
CLUDING:

■ Variables, operators, and expressions
■ Arrays (including vectors and matrices)
■ Basic input and output
■ Repetition (for)
■ Decisions (if)

The tools introduced in this chapter are sufficient to begin solving numerous
scientific and engineering problems you may encounter in your course work
and in your profession. The last part of this chapter and the next chapter
describe an approach to designing reasonably good programs to initiate the
building of tools for your own toolbox.

2.1 VARIABLES

Variables are fundamental to programming. In a sense, the art of programming
is this:

Getting the right values in the right variables at the right time

A variable name (like the variable balance that we used in Chapter 1) must
comply with the following two rules:

■ It may consist only of the letters a–z, the digits 0–9, and the under-
score (_).

■ It must start with a letter.

The name may be as long as you like, but MATLAB only remembers the first 63
characters (to check this on your version, execute the command namelength-

max in the Command Window of the MATLAB desktop). Examples of valid

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00008-7
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

31

https://doi.org/10.1016/B978-0-08-102997-8.00008-7

32 CHAPTER 2: MATLAB Fundamentals

Expressions 47
Statements 48
Statements,
commands, and
functions 49
Formula
vectorization 49

Output 52
The disp statement 52
The format
command 54
Scale factors 55

Repeating with
for 55
Square roots with
Newton’s method... 56
Factorials! 57
Limit of a sequence 58
The basic for
construct.............. 58
for in a single line.. 60
More general for ... 60
Avoid for loops by
vectorizing! 60

Decisions 63
The one-line if
statement............. 63
The if-else
construct.............. 65
The one-line
if-else statement.. 66
elseif.................. 66
Logical operators... 68
Multiple ifs versus
elseif.................. 68
Nested ifs 70
Vectorizing ifs?..... 71
The switch
statement............. 71

Complex
numbers 71

Summary 73

Exercises 75

Supplementary
material 81

variable names are r2d2 and pay_day. Examples of invalid names (why?) are
pay-day, 2a, name$, and _2a.

A variable is created simply by assigning a value to it at the command line or
in a program—for example,

a = 98

If you attempt to refer to a nonexistent variable you will get the error message
in red

Undefined function or variable ’...’.

The official MATLAB documentation refers to all variables as arrays, whether
they are single-valued (scalars) or multi-valued (vectors or matrices). In other
words, a scalar is a 1-by-1 array—an array with a single row and a single column
which, of course, is an array of one item.

2.1.1 Case sensitivity

MATLAB is case-sensitive, which means it distinguishes between upper- and
lowercase letters. Thus, balance, BALANCE and BaLance are three different vari-
ables. Many programmers write variable names in lowercase except for the first
letter of the second and subsequent words, if the name consists of more than
one word run together. This style is known as camel caps, the uppercase let-
ters looking like a camel’s humps (with a bit of imagination). Examples are
camelCaps, milleniumBug, dayOfTheWeek. Some programmers prefer to separate
words with underscores.

Command and function names are also case-sensitive. You must not use capi-
tals when running built-in functions and commands!

2.2 THE WORKSPACE

Another fundamental concept in MATLAB is the workspace. Enter the command
clear and then rerun the compound interest program (see Section 1.3.2). Now
enter the command who. You should see a list of variables as follows:

Your variables are:

balance interest rate

All the variables you create during a session remain in the workspace until you
clear them. You can use or change their values at any stage during the session.

2.2 The workspace 33

The command who lists the names of all the variables in your workspace. The
function ans returns the value of the last expression evaluated but not assigned
to a variable. The command whos lists the size of each variable as well:

Name Size Bytes Class

balance 1x1 8 double
interest 1x1 8 double
rate 1x1 8 double

Each variable here occupies eight bytes of storage. A byte is the amount of com-
puter memory required for one character (if you are interested, one byte is
the same as eight bits). These variables each have a size of “1 by 1,” because
they are scalars, as opposed to vectors or matrices (although as mentioned
above, MATLAB regards them all as 1-by-1 arrays). The Class double means
that the variable holds numeric values as double-precision floating-point (see
Section 2.5).

The command clear removes all variables from the workspace. A particular
variable can be removed from the workspace (e.g., clear rate). More than one
variable can also be cleared (e.g., clear rate balance). Separate the variable
names with spaces, not commas.

When you run a program, any variables created by it remain in the workspace
after it runs. This means that existing variables with the same names are over-
written.

The Workspace browser on the desktop provides a handy visual representation
of the workspace. You can view and even change the values of workspace vari-
ables with the Array Editor. To activate the Array Editor click on a variable in
the Workspace browser or right-click to get the more general context menu.
From the context menu you can draw graphs of workspace variables in various
ways.

2.2.1 Adding commonly used constants to the workspace

If you often use the same physical or mathematical constants in your MATLAB
sessions, you can save them in an M-file and run the file at the start of a session.
For example, the following statements can be saved in myconst.m:

g = 9.81; % acceleration due to gravity
avo = 6.023e23; % Avogadro’s number
e = exp(1); % base of natural log
pi_4 = pi / 4;
log10e = log10(e);
bar_to_kP = 101.325; % atmospheres to kiloPascals

34 CHAPTER 2: MATLAB Fundamentals

If you run myconst at the start of a session, these six variables will be part of the
workspace and will be available for the rest of the session or until you clear
them. This approach to using MATLAB is like a notepad (it is one of many
ways). As your experience grows, you will discover many more utilities and
capabilities associated with MATLAB’s computational and analytical environ-
ment.

2.3 ARRAYS: VECTORS AND MATRICES

As mentioned in Chapter 1, the name MATLAB stands for Matrix Laboratory
because MATLAB has been designed to work with matrices. A matrix is a rect-
angular object (e.g., a table) consisting of rows and columns. We will postpone
most of the details of proper matrices and how MATLAB works with them until
Chapter 6.

A vector is a special type of matrix, having only one row or one column. Vectors
are called lists or arrays in other programming languages. If you haven’t come
across vectors officially yet, don’t worry—just think of them as lists of numbers.

MATLAB handles vectors and matrices in the same way, but since vectors are
easier to think about than matrices, we will look at them first. This will en-
hance your understanding and appreciation of many aspects of MATLAB. As
mentioned above, MATLAB refers to scalars, vectors, and matrices generally as
arrays. We will also use the term array generally, with vector and matrix referring
to the one-dimensional (1D) and two-dimensional (2D) array forms.

2.3.1 Initializing vectors: Explicit lists

As a start, try the accompanying short exercises on the command line. These
are all examples of the explicit list method of initializing vectors. (You won’t
need reminding about the command prompt � or the need to <Enter> any
more, so they will no longer appear unless the context absolutely demands
it.)

Exercises
2.1 Enter a statement like

x = [1 3 0 -1 5]

Can you see that you have created a vector (list) with five elements? (Make
sure to leave out the semicolon so that you can see the list. Also, make sure
you hit Enter to execute the command.)

2.2 Enter the command disp(x) to see how MATLAB displays a vector.
2.3 Enter the command whos (or look in the Workspace browser). Under the head-

ing Size you will see that x is 1 by 5, which means 1 row and 5 columns. You
will also see that the total number of elements is 5.

2.3 Arrays: Vectors and matrices 35

2.4 You can use commas instead of spaces between vector elements if you like.
Try this:

a = [5,6,7]

2.5 Don’t forget the commas (or spaces) between elements; otherwise, you could
end up with something quite different:

x = [130 - 15]

What do you think this gives? Take the space between the minus sign and 15
to see how the assignment of x changes.

2.6 You can use one vector in a list for another one. Type in the following:

a = [1 2 3]

b = [4 5]

c = [a -b]

Can you work out what c will look like before displaying it?
2.7 And what about this?

a = [1 3 7];

a = [a 0 -1];

2.8 Enter the following

x = []

Note in the Workspace browser that the size of x is given as 0 by 0 because x is
empty. This means x is defined and can be used where an array is appropriate
without causing an error; however, it has no size or value.
Making x empty is not the same as saying x = 0 (in the latter case x has size
1 by 1) or clear x (which removes x from the workspace, making it undefined).
An empty array may be used to remove elements from an array (see Sec-
tion 2.3.5).

Remember the following important rules:

■ Elements in the list must be enclosed in square brackets, not parentheses.
■ Elements in the list must be separated either by spaces or by commas.

2.3.2 Initializing vectors: The colon operator

A vector can also be generated (initialized) with the colon operator, as we saw
in Chapter 1. Enter the following statements:

x = 1:10

(elements are the integers 1, 2, . . . , 10)

36 CHAPTER 2: MATLAB Fundamentals

x = 1:0.5:4

(elements are the values 1, 1.5, . . . , 4 in increments of 0.5. Note that if the
colons separate three values, the middle value is the increment);

x = 10:-1:1

(elements are the integers 10, 9, . . . , 1, since the increment is negative);

x = 1:2:6

(elements are 1, 3, 5; note that when the increment is positive but not equal
to 1, the last element is not allowed to exceed the value after the second colon);

x = 0:-2:-5

(elements are 0,−2,−4; note that when the increment is negative but not equal
to −1, the last element is not allowed to be less than the value after the second
colon);

x = 1:0

(a complicated way of generating an empty vector!).

2.3.3 The linspace and logspace functions

The function linspace can be used to initialize a vector of equally spaced val-
ues:

linspace(0, pi/2, 10)

creates a vector of 10 equally spaced points from 0 to π/2 (inclusive).

The function logspace can be used to generate logarithmically spaced data. It is
a logarithmic equivalent of linspace. To illustrate the application of logspace
try the following:

y = logspace(0, 2, 10)

This generates the following set of numbers 10 numbers between 100 to 102 (in-
clusive): 1.0000, 1.6681, 2.7826, 4.6416, 7.7426, 12.9155, 21.5443, 35.9381,
59.9484, 100.0000. If the last number in this function call is omitted, the num-
ber of values of y computed is by default 50. What is the interval between the

2.3 Arrays: Vectors and matrices 37

numbers 1 and 100 in this example? To compute the distance between the
points you can implement the following command:

dy = diff(y)
yy = y(1:end-1) + dy./2
plot(yy,dy)

You will find that you get a straight line from the point (yy, dy) = (1.3341,

0.6681) to the point (79.9742,40.0516). Thus, the logspace function produces
a set of points with an interval between them that increases linearly with y. The
variable yy was introduced for two reasons. The first was to generate a vector of
the same length as dy. The second was to examine the increase in the interval
with increase in y that is obtained with the implementation of logspace.

2.3.4 Transposing vectors

All of the vectors examined so far are row vectors. Each has one row and several
columns. To generate the column vectors that are often needed in mathematics,
you need to transpose such vectors—that is, you need to interchange their rows
and columns. This is done with the single quote, or apostrophe (’), which is the
nearest MATLAB can get to the mathematical prime (′) that is often used to
indicate the transpose.

Enter x = 1:5 and then enter x’ to display the transpose of x. Note that x itself
remains a row vector. Alternatively, or you can create a column vector directly:

y = [1 4 8 0 -1]’

2.3.5 Subscripts

We can refer to particular elements of a vector by means of subscripts. Try the
following:

1. Enter r = rand(1,7). This gives you a row vector of seven random num-
bers.

2. Enter r(3). This will display the third element of r. The numeral 3 is the
subscript.

3. Enter r(2:4). This should give you the second, third, and fourth ele-
ments.

4. What about r(1:2:7) and r([1 7 2 6])?
5. Use an empty vector to remove elements from a vector:

r([1 7 2]) = []

This will remove elements 1, 7, and 2.

38 CHAPTER 2: MATLAB Fundamentals

To summarize:

■ A subscript is indicated by parentheses.
■ A subscript may be a scalar or a vector.
■ In MATLAB subscripts always start at 1.
■ Fractional subscripts are not allowed.

2.3.6 Matrices

A matrix may be thought of as a table consisting of rows and columns. You cre-
ate a matrix just as you do a vector, except that a semicolon is used to indicate
the end of a row. For example, the statement

a = [1 2 3; 4 5 6]

results in

a =
1 2 3
4 5 6

A matrix may be transposed: With a initialized as above, the statement a’ re-
sults in

ans =
1 4
2 5
3 6

A matrix can be constructed from column vectors of the same length. Thus, the
statements

x = 0:30:180;
table = [x’ sin(x*pi/180)’]

result in

table =
0 0

30.0000 0.5000
60.0000 0.8660
90.0000 1.0000

120.0000 0.8660
150.0000 0.5000
180.0000 0.0000

2.3 Arrays: Vectors and matrices 39

2.3.7 Capturing output

You can use cut and paste techniques to tidy up the output from MATLAB
statements if this is necessary for some sort of presentation. Generate the table
of angles and sines as shown above. Select all seven rows of numerical output
in the Command Window, and copy the selected output to the Editor. You
can then edit the output, for example, by inserting text headings above each
column (this is easier than trying to get headings to line up over the columns
with a disp statement). The edited output can in turn be pasted into a report
or printed as is (the File menu has a number of printing options).

Another way of capturing output is with the diary command. The command

diary filename

copies everything that subsequently appears in the Command Window to the
text file filename. You can then edit the resulting file with any text editor (in-
cluding the MATLAB Editor). Stop recording the session with

diary off

Note that diary appends material to an existing file—that is, it adds new infor-
mation to the end of it.

2.3.8 Structure plan

A structure plan is a top-down design of the steps required to solve a partic-
ular problem with a computer. It is typically written in what is called pseudo-
code—that is, statements in English, mathematics, and MATLAB describing in
detail how to solve a problem. You don’t have to be an expert in any particular
computer language to understand pseudo-code. A structure plan may be writ-
ten at a number of levels, each of increasing complexity, as the logical structure
of the program is developed.

Suppose we want to write a script to convert a temperature on the Fahrenheit
scale (where water freezes and boils at 32◦ and 212◦, respectively) to the Celsius
scale. A first-level structure plan might be a simple statement of the problem:

1. Initialize Fahrenheit temperature
2. Calculate and display Celsius temperature
3. Stop

Step 1 is pretty straightforward. Step 2 needs elaborating, so the second-level
plan could be something like this:

1. Initialize Fahrenheit temperature (F)
2. Calculate Celsius temperature (C) as follows: Subtract 32 from F and

multiply by 5/9

40 CHAPTER 2: MATLAB Fundamentals

3. Display the value of C
4. Stop

There are no hard and fast rules for writing structure plans. The essential point
is to cultivate the mental discipline of getting the problem logic clear before
attempting to write the program. The top-down approach of structure plans
means that the overall structure of a program is clearly thought out before you
have to worry about the details of syntax (coding). This reduces the number of
errors enormously.

A script to implement this is as follows:

% Script file to convert temperatures from F to C
%
F = input(’ Temperature in degrees F: ’)

C = (F - 32) * 5 / 9;
disp([’ Temperature in degrees C = ’,num2str(C)])
% STOP

Two checks of the tool were done. They were for F = 32, which gave C = 0, and
F = 212, which gave C = 100. The results were found to be correct and hence
this simple script is, as such, validated.

The essence of any structure plan and, hence, any computer program can be
summarized as follows:

1. Input: Declare and assign input variables.
2. Operations: Solve expressions that use the input variables.
3. Output: Display in graphs or tables the desired results.

2.4 VERTICAL MOTION UNDER GRAVITY

If a stone is thrown vertically upward with an initial speed u, its vertical dis-
placement s after an elapsed time t is given by the formula s = ut − gt2/2,
where g is the acceleration due to gravity. Air resistance is ignored. We would
like to compute the value of s over a period of about 12.3 seconds at intervals
of 0.1 seconds, and plot the distance–time graph over this period, as shown in
Fig. 2.1. The structure plan for this problem is as follows:

1. % Assign the data (g, u, and t) to MATLAB variables
2. % Calculate the value of s according to the formula
3. % Plot the graph of s against t
4. % Stop

2.4 Vertical motion under gravity 41

FIGURE 2.1
Distance-time graph of a stone thrown vertically upward.

This plan may seem trivial and a waste of time to write down. Yet you would
be surprised how many beginners, preferring to rush straight to the computer,
start with step 2 instead of step 1. It is well worth developing the mental disci-
pline of structure-planning your program first. You can even use cut and paste
to plan as follows:

1. Type the structure plan into the Editor (each line preceded by % as shown
above).

2. Paste a second copy of the plan directly below the first.
3. Translate each line in the second copy into a MATLAB statement or state-

ments (add % comments as in the example below).
4. Finally, paste all the translated MATLAB statements into the Command

Window and run them (or you can just click on the green triangle in the
toolbar of the Editor to execute your script).

5. If necessary, go back to the Editor to make corrections and repaste the
corrected statements to the Command Window (or save the program in
the Editor as an M-file and execute it).

You might like to try this as an exercise before looking at the final program,
which is as follows:

% Vertical motion under gravity
g = 9.81; % acceleration due
% to gravity
u = 60; % initial velocity in
% meters/sec
t = 0 : 0.01 : 12.3; % time in seconds

42 CHAPTER 2: MATLAB Fundamentals

s = u * t - g / 2 * t .^ 2; % vertical displacement
% in meters
plot(t, s,’k’,’LineWidth’,3)
title(’Vertical motion under gravity’)
xlabel(’time’), ylabel(’vertical displacement’)
grid

The graphical output is shown in Fig. 2.1.

Note the following points:

■ Anything in a line following the symbol % is ignored by MATLAB and may
be used as a comment (description).

■ The statement t = 0 : 0.1 : 12.3 sets up a vector.
■ The formula for s is evaluated for every element of the vector t, making

another vector.
■ The expression t.^2 squares each element in t. This is called an array op-

eration and is different from squaring the vector itself, which is a matrix
operation, as we will see later.

■ More than one statement can be entered on the same line if the state-
ments are separated by commas.

■ A statement or group of statements can be continued to the next line with
an ellipsis of three or more dots (...).

■ The statement disp([t’ s’]) first transposes the row vectors t and s into
two columns and constructs a matrix from them, which is then displayed.

You might want to save the program under a helpful name, like throw.m, if
you think you might come back to it. In that case, it would be worth keeping
the structure plan as part of the file; just insert % symbols in front of each
line. This way, the plan reminds you what the program does when you look
at it again after some months. Note that you can use the context menu in
the Editor to Comment/Uncomment a block of selected text. After you block
selected text, right-click to see the context menu. To comment the text, scroll
down to Comment, point, and click.

2.5 OPERATORS, EXPRESSIONS, AND STATEMENTS

Any program worth its salt actually does something. What it basically does is
evaluate expressions, such as

u*t - g/2*t.^2

and execute (carry out) statements, such as

balance = balance + interest

2.5 Operators, expressions, and statements 43

MATLAB is described as an expression based language because it interprets
and evaluates typed expressions. Expressions are constructed from a variety
of things, such as numbers, variables, and operators. First we need to look at
numbers.

2.5.1 Numbers

Numbers can be represented in MATLAB in the usual decimal form (fixed point)
with an optional decimal point,

1.2345 -123 .0001

They may also be represented in scientific notation. For example, 1.2345 × 109

may be represented in MATLAB as 1.2345e9. This is also called floating-point
notation. The number has two parts: the mantissa, which may have an optional
decimal point (1.2345 in this example) and the exponent (9), which must be
an integer (signed or unsigned). Mantissa and exponent must be separated by
the letter e (or E). The mantissa is multiplied by the power of 10 indicated by
the exponent.

Note that the following is not scientific notation: 1.2345*10^9. It is actually
an expression involving two arithmetic operations (* and ^) and therefore
more time consuming. Use scientific notation if the numbers are very small
or very large, since there’s less chance of making a mistake (e.g., represent
0.000000001 as 1e-9).

On computers using standard floating-point arithmetic, numbers are repre-
sented to approximately 16 significant decimal digits. The relative accuracy of
numbers is given by the function eps, which is defined as the distance between
1.0 and the next largest floating-point number. Enter eps to see its value on
your computer.

The range of numbers is roughly ±10−308 to ±10308. Precise values for your
computer are returned by the MATLAB functions realmin and realmax.

As an exercise, enter the following numbers at the command prompt in scien-
tific notation (answers follow in parentheses):

1.234 × 105, −8.765 × 10−4, 10−15, −1012

(1.234e+05, −8.765e−04, 1e−15, −1e+12)

2.5.2 Data types

MATLAB has more than a dozen fundamental data types (or classes). The de-
fault numeric data type is double precision; all MATLAB computations are in
double precision. More information on data types can be found in the Help
index.

44 CHAPTER 2: MATLAB Fundamentals

Table 2.1 Arithmetic operations between two scalars.

Operation Algebraic form MATLAB

Addition a + b a + b

Subtraction a − b a - b

Multiplication a × b a * b

Right division a/b a / b

Left division b/a a \ b

Power ab a ^ b

Table 2.2 Precedence of arithmetic operations.

Precedence Operator

1 Parentheses (round brackets)

2 Power, left to right

3 Multiplication and division, left to right

4 Addition and subtraction, left to right

MATLAB also supports signed and unsigned integer types and single-precision
floating-point, by means of functions such as int8, uint8, single, and the like.
However, before mathematical operations can be performed on such types,
they must be converted to double precision using the double function.

2.5.3 Arithmetic operators

The evaluation of expressions is achieved by means of arithmetic operators. The
arithmetic operations on two scalar constants or variables are shown in Ta-
ble 2.1. Operators operate on operands (a and b in the table).

Left division seems a little curious: Divide the right operand by the left operand.
For scalar operands the expressions 1/3 and 3\1 have the same numerical value
(a colleague of mine speaks of the latter as “3 under 1”). However, matrix left
division has an entirely different meaning, as we will see later.

2.5.4 Operator precedence

Several operations may be combined in one expression—for example,
g * t ^ 2. MATLAB has strict precedence rules for which operations are per-
formed first in such cases. The precedence rules for the operators in Table 2.1
are shown in Table 2.2. Note that parentheses have the highest precedence.
Note also the difference between parentheses and square brackets. The former
are used to alter the precedence of operators and to denote subscripts, while
the latter are used to create vectors.

2.5 Operators, expressions, and statements 45

When operators in an expression have the same precedence, the operations are
carried out from left to right. So a / b * c is evaluated as (a / b) * c and not
as a / (b * c).

Exercises
2.1 Evaluate the following MATLAB expressions yourself before checking the an-

swers in MATLAB:

1 + 2 * 3

4 / 2 * 2

1 + 2 / 4

1 + 2 \ 4

2 * 2 ^ 3

2 * 3 \ 3

2 ^ (1 + 2)/3

1/2e-1

2.2 Use MATLAB to evaluate the following expressions. Answers are in parenthe-
ses.
(a) 1

2×3 (0.1667)
(b) 22×3 (64)
(c) 1.5 × 10−4 + 2.5 × 10−2 (0.0252; use scientific or floating-point notation)

2.5.5 The colon operator

The colon operator has a lower precedence than the plus operator, as the fol-
lowing shows:

1+1:5

The addition is carried out first and a vector with elements 2, . . . , 5 is then
initialized.

You may be surprised at the following:

1+[1:5]

Were you? The value 1 is added to each element of the vector 1:5. In this context,
the addition is called an array operation because it operates on each element of
the vector (array). Array operations are discussed below.

See Appendix A for a complete list of MATLAB operators and their prece-
dences.

46 CHAPTER 2: MATLAB Fundamentals

Table 2.3 Arithmetic operators that operate element-by-element on arrays.

Operator Description

.* Multiplication

./ Right division

.\ Left division

.ˆ Power

2.5.6 The transpose operator

The transpose operator has the highest precedence. Try

1:5’

The 5 is transposed first (into itself since it is a scalar!), and then a row vector
is formed. Use square brackets if you want to transpose the whole vector:

[1:5]’

2.5.7 Arithmetic operations on arrays

Enter the following statements at the command line:

a = [2 4 5];
b = [6 2 2];
a .* b
a ./ b

MATLAB has four additional arithmetic operators, as shown in Table 2.3 that
work on corresponding elements of arrays with equal dimensions. They are
sometimes called array or element-by-element operations because they are per-
formed element by element. For example, a .* b results in the following vector
(sometimes called the array product):

[a(1)*b(1) a(2)*b(2) a(3)*b(3)]

that is, [12 8 10].

You will have seen that a ./ b gives element-by-element division. Now try
[2 3 4] .^ [4 3 1]. The ith element of the first vector is raised to the power
of the ith element of the second vector. The period (dot) is necessary for the
array operations of multiplication, division, and exponentiation because these
operations are defined differently for matrices; they are then called matrix op-
erations (see Chapter 6). With a and b as defined above, try a + b and a - b.

2.5 Operators, expressions, and statements 47

For addition and subtraction, array operations and matrix operations are the
same, so we don’t need the period to distinguish them.

When array operations are applied to two vectors, both vectors must be the
same size!

Array operations also apply between a scalar and a nonscalar. Check this with
3 .* a and a .^ 2. This property is called scalar expansion. Multiplication
and division operations between scalars and nonscalars can be written with
or without the period (i.e., if a is a vector, 3 .* a is the same as 3 * a).

A common application of element-by-element multiplication is finding the
scalar product (also called the dot product) of two vectors x and y, which is
defined as

x · y =
∑

i

xiyi

The MATLAB function sum(z) finds the sum of the elements of the vector z, so
the statement sum(a .* b) will find the scalar product of a and b (30 for a and
b defined above).

Exercises
Use MATLAB array operations to do the following:

2.1 Add 1 to each element of the vector [2 3 -1].
2.2 Multiply each element of the vector [1 4 8] by 3.
2.3 Find the array product of the two vectors [1 2 3] and [0 -1 1]. (Answer:

[0 -2 3])
2.4 Square each element of the vector [2 3 1].

2.5.8 Expressions

An expression is a formula consisting of variables, numbers, operators, and
function names. It is evaluated when you enter it at the MATLAB prompt. For
example, evaluate 2π as follows:

2 * pi

MATLAB’s response is

ans =
6.2832

Note that MATLAB uses the function ans (which stands for answer) to return
the last expression to be evaluated but not assigned to a variable.

48 CHAPTER 2: MATLAB Fundamentals

If an expression is terminated with a semicolon (;), its value is not displayed,
although it is still returned by ans.

2.5.9 Statements

MATLAB statements are frequently of the form

variable = expression

as in

s = u * t - g / 2 * t .^ 2;

This is an example of an assignment statement because the value of the expres-
sion on the right is assigned to the variable (s) on the left. Assignment always
works in this direction. Note that the object on the left-hand side of the assign-
ment must be a variable name. A common mistake is to get the statement the
wrong way around, as in

a + b = c

Basically any line that you enter in the Command Window or in a program,
which MATLAB accepts, is a statement, so a statement can be an assignment,
a command, or simply an expression, such as

x = 29; % assignment
clear % command
pi/2 % expression

This naming convention is in keeping with most programming languages and
serves to emphasize the different types of statements that are found in pro-
gramming. However, the MATLAB documentation tends to refer to all of these
as “functions.”

As we have seen, a semicolon at the end of an assignment or expression sup-
presses any output. This is useful for suppressing irritating output of interme-
diate results (or large matrices).

A statement that is too long to fit on one line may be continued to the next
line with an ellipsis of at least three dots:

x = 3 * 4 - 8
/ 2 ^ 2;

Statements on the same line may be separated by commas (output not sup-
pressed) or semicolons (output suppressed):

2.5 Operators, expressions, and statements 49

a = 2; b = 3, c = 4;

Note that the commas and semicolons are not technically part of the state-
ments; they are separators.

Statements may involve array operations, in which case the variable on the
left-hand side may become a vector or a matrix.

2.5.10 Statements, commands, and functions

The distinction between MATLAB statements, commands, and functions can be a
little fuzzy, since all can be entered on the command line. However, it is help-
ful to think of commands as changing the general environment in some way,
for example, load, save, and clear. Statements do the sort of thing we usu-
ally associate with programming, such as evaluating expressions and carrying
out assignments, making decisions (if), and repeating (for). Functions return
with calculated values or perform some operation on data, such as sin and
plot.

2.5.11 Formula vectorization

With array operations, you can easily evaluate a formula repeatedly for a large
set of data. This is one of MATLAB’s most useful and powerful features, and
you should always look for ways to exploit it.

Let us again consider, as an example, the calculation of compound interest. An
amount of money A invested over a period of years n with an annual interest
rate r grows to an amount A(1 + r)n. Suppose we want to calculate final bal-
ances for investments of $750, $1000, $3000, $5000, and $11,999 over 10 years
with an interest rate of 9%. The following program (comp.m) uses array opera-
tions on a vector of initial investments to do this:

format bank
A = [750 1000 3000 5000 11999];
r = 0.09;
n = 10;
B = A * (1 + r) ^ n;
disp([A’ B’])

The output is

750.00 1775.52
1000.00 2367.36
3000.00 7102.09
5000.00 11836.82

11999.00 28406.00

50 CHAPTER 2: MATLAB Fundamentals

Note the following:

■ In the statement B = A * (1 + r) ^ n, the expression (1 + r) ^ n is
evaluated first because exponentiation has a higher precedence than mul-
tiplication.

■ Each element of the vector A is then multiplied by the scalar (1 + r) ^ n
(scalar expansion).

■ The operator * may be used instead of .* because the multiplication is
between a scalar and a nonscalar (although .* would not cause an error
because a scalar is a special case of an array).

■ A table is displayed whose columns are given by the transposes of A and B.

This process is called formula vectorization. The operation in the statement de-
scribed in bullet item 1 is such that every element in the vector B is determined
by operating on every element of vector A all at once, by interpreting once a
single command line.

See if you can adjust the program comp.m to find the balances for a single
amount A ($1000) over 1, 5, 10, 15, and 20 years. (Hint: use a vector for n:
[1 5 10 15 20].)

Exercises
2.1 Evaluate the following expressions yourself (before you use MATLAB to

check). The numerical answers are in parentheses.
(a) 2 / 2 * 3 (3)
(b) 2 / 3 ˆ 2 (2/9)
(c) (2 / 3) ˆ 2 (4/9)
(d) 2 + 3 * 4 - 4 (10)
(e) 2 ˆ 2 * 3 / 4 + 3 (6)
(f) 2 ˆ (2 * 3) / (4 + 3) (64/7)
(g) 2 * 3 + 4 (10)
(h) 2 ˆ 3 ˆ 2 (64)
(i) - 4 ˆ 2 (-16; ˆ has higher precedence than -)

2.2 Use MATLAB to evaluate the following expressions. The answers are in paren-
theses.
(a)

√
2 (1.4142; use sqrt or ˆ0.5)

(b)
3 + 4

5 + 6
(0.6364; use brackets)

(c) Find the sum of 5 and 3 divided by their product (0.5333)
(d) 232

(512)
(e) Find the square of 2π (39.4784; use pi)
(f) 2π2 (19.7392)
(g) 1/

√
2π (0.3989)

(h)
1

2
√

π
(0.2821)

2.5 Operators, expressions, and statements 51

(i) Find the cube root of the product of 2.3 and 4.5 (2.1793)

(j)
1 − 2

3+2

1 + 2
3−2

(0.2)

(k) 1000(1 + 0.15/12)60 (2107.2—for example, $1000 deposited for 5 years
at 15% per year, with the interest compounded monthly)

(l) (0.0000123 + 5.678 × 10−3)× 0.4567 × 10−4 (2.5988 × 10−7; use scien-
tific notation—for example, 1.23e-5 . . . ; do not use ˆ)

2.3 Try to avoid using unnecessary parentheses in an expression. Can you spot the
errors in the following expression? (Test your corrected version with MATLAB.)

(2(3+4)/(5*(6+1))^2

Note that the MATLAB Editor has two useful ways of dealing with the problem
of “unbalanced delimiters” (which you should know about if you have been
working through Help!):

■ When you type a closing delimiter, that is, a right),], or }, its matching
opening delimiter is briefly highlighted. So if you don’t see the high-
lighting when you type a right delimiter, you immediately know you’ve
got one too many.

2.4 Set up a vector n with elements 1, 2, 3, 4, 5. Use MATLAB array operations on
it to set up the following four vectors, each with five elements:
(a) 2, 4, 6, 8, 10
(b) 1/2, 1, 3/2, 2, 5/2
(c) 1, 1/2, 1/3, 1/4, 1/5
(d) 1,1/22,1/32,1/42,1/52

2.5 Suppose vectors a and b are defined as follows:

a = [2 -1 5 0];

b = [3 2 -1 4];

Evaluate by hand the vector c in the following statements. Check your an-
swers with MATLAB.
(a) c = a - b;

(b) c = b + a - 3;

(c) c = 2 * a + a .ˆ b;

(d) c = b ./ a;

(e) c = b . a;

(f) c = a .ˆ b;

(g) c = 2.ˆb+a;

(h) c = 2*b/3.*a;

(i) c = b*2.*a;

2.6 Water freezes at 32◦ and boils at 212◦ on the Fahrenheit scale. If C and F are
Celsius and Fahrenheit temperatures, the formula

F = 9C/5 + 32

52 CHAPTER 2: MATLAB Fundamentals

converts from one to the other. Use the MATLAB command line to convert
Celsius 37◦ (normal human temperature) to Fahrenheit (98.6◦).

2.7 Engineers often have to convert from one unit of measurement to another,
which can be tricky sometimes. You need to think through the process care-
fully. For example, convert 5 acres to hectares, given that an acre is 4840
square yards, a yard is 36 inches, an inch is 2.54 centimeters, and a hectare
is 10,000 square meters. The best approach is to develop a formula to convert
x acres to hectares. You can do this as follows.

■ One square yard = (36 × 2.54)2 cm2

■ So one acre = 4840 × (36 × 2.54)2 cm2

= 0.4047 × 108 cm2

= 0.4047 hectares
■ So x acres = 0.4047 × x hectares

Once you have found the formula (but not before), MATLAB can do the rest:

x = 5; % acres

h = 0.4047 * x; % hectares

disp(h)

2.8 Develop formulae for the following conversions, and use someMATLAB state-
ments to find the answers (in parentheses).
(a) Convert 22 yards (an imperial cricket pitch) to meters. (20.117 meters)
(b) One pound (weight) = 454 grams. Convert 75 kilograms to pounds.

(165.20 pounds)
(c) Convert 49meters/second (terminal velocity for a falling human-shaped

object) to kilometers per hour. (176.4 kilometers per hour)
(d) One atmosphere pressure = 14.7 pounds per square inch (psi) =

101.325 kilo Pascals (kPa). Convert 40 psi to kPa. (275.71 kPa)
(e) One calorie= 4.184 joules. Convert 6.25 kilojoules to calories. (1.494 kilo-

calories)

2.6 OUTPUT

There are two straightforward ways of getting output from MATLAB:

■ Entering a variable name, assignment, or expression on the command
line, without a semicolon

■ Using the disp statement (e.g., disp(x))

2.6.1 The disp statement

The general form of disp for a numeric variable is

disp(variable)

2.6 Output 53

When you use disp, the variable name is not displayed, and you don’t get a
line feed before the value is displayed, as you do when you enter a variable
name on the command line without a semicolon. disp generally gives a neater
display.

You can also use disp to display a message enclosed in apostrophes (called a
string). Apostrophes that are part of the message must be repeated:

disp(’Pilate said, ’’What is truth?’’’);

To display a message and a value on the same line, use the following trick:

x = 2;
disp([’The answer is ’, num2str(x)]);

The output should be

The answer is 2

Square brackets create a vector, as we have seen. If we want to display a string,
we create it; that is, we type a message between apostrophes. This we have
done already in the above example by defining the string ’The answer is ’.
Note that the last space before the second apostrophe is part of the string. All
the components of a MATLAB array must be either numbers or strings (unless
you use a cell array—see Chapter 10), so we convert the number x to its string
representation with the function num2str; read this as “number to string.”

You can display more than one number on a line as follows:

disp([x y z])

The square brackets create a vector with three elements, which are all displayed.

The command more on enables paging of output. This is very useful when dis-
playing large matrices, for example, rand(100000,7) (see help more for details).
If you forget to switch on more before displaying a huge matrix, you can always
stop the display with Ctrl+C.

As you gain experience with MATLAB you may wish to learn more about the
input and output capabilities in MATLAB. You can begin your search for infor-
mation by clicking the question mark at the top of the desktop to open the
help documents. Then search for fopen, a utility which allows you to open a
file. Scroll to the bottom of the page in the help manual on this topic and
find the following list of functions: fclose, feof, ferror, fprintf, fread,
fscanf, fseek, ftell, fwrite. Click on fprintf, which is a formatted output

54 CHAPTER 2: MATLAB Fundamentals

utility that is popular if you are a C-language programmer. Search for input in
the help manual to learn more about this function that is used in a number of
examples in this text. Of course, the simplest input of data is the assignment
of values to variables in a program of commands.

2.6.2 The format command

The term format refers to how something is laid out: in this case MATLAB out-
put. The default format in MATLAB has the following basic output rules:

■ It always attempts to display integers (whole numbers) exactly. However,
if the integer is too large, it is displayed in scientific notation with five
significant digits—1234567890 is displayed as 1.2346e+009 (i.e., 1.2346×
109). Check this by first entering 123456789 at the command line and
then 1234567890.

■ Numbers with decimal parts are displayed with four significant digits. If
the value x is in the range 0.001 < x ≤ 1000, it is displayed in fixed-point
form; otherwise, scientific (floating-point) notation is used, in which
case the mantissa is between 1 and 9.9999 (e.g., 1000.1 is displayed
as 1.0001e+003). Check this by entering the following numbers at the
prompt (on separate lines): 0.0011, 0.0009, 1/3, 5/3, 2999/3, 3001/3.

You can change from the default with variations on the format command,
as follows. If you want values displayed in scientific notation (floating-point
form) whatever their size, enter the command

format short e

All output from subsequent disp statements will be in scientific notation, with
five significant digits, until the next format command is issued. Enter this com-
mand and check it with the following values: 0.0123456, 1.23456, 123.456
(all on separate lines).

If you want more accurate output, you can use format long e. This also
gives scientific notation but with 15 significant digits. Try it out on 1/7. Use
format long to get fixed-point notation with 15 significant digits. Try 100/7
and pi. If you’re not sure of the order of magnitude of your output you can try
format short g or format long g. The g stands for “general.” MATLAB decides
in each case whether to use fixed or floating point.

Use format bank for financial calculations; you get fixed point with two dec-
imal digits (for cents). Try it on 10000/7. Suppress irritating line feeds with
format compact, which gives a more compact display. format loose reverts to
a more airy display. Use format hex to get hexadecimal display.

Use format rat to display a number as a rational approximation (ratio of two
integers). For example, pi is displayed as 355/113, a pleasant change from the

2.7 Repeating with for 55

tired old 22/7. Note that even this is an approximation! Try out format rat on√
2 and e (exp(1)).

The symbols +, −, and a space are displayed for positive, negative, and zero
elements of a vector or matrix after the command format +. In certain appli-
cations this is a convenient way of displaying matrices. The command format
by itself reverts to the default format. You can always try help format if you’re
confused!

2.6.3 Scale factors

Enter the following commands (MATLAB’s response is also shown).

� format compact

� x = [1e3 1 1e-4]

x =

1.0e+003 *

1.0000 0.0010 0.0000

With format short (the default) and format long, a common scale factor is
applied to the whole vector if its elements are very large or very small or differ
greatly in magnitude. In this example, the common scale factor is 1000, so the
elements displayed must all be multiplied by it to get their proper value—for
example, for the second element 1.0e+003 * 0.0010 gives 1. Taking a factor
of 1000 out of the third element (1e-4) leaves 1e-7, which is represented by
0.0000 since only four decimal digits are displayed.

If you don’t want a scale factor, try format bank or format short e:

� x

x =

1000.00 1.00 0.00

� format short e

� x

x =

1.0000e+003 1.0000e+000 1.0000e-004

2.7 REPEATING WITH for

So far we have seen how to get data into a program (i.e., provide input), how
to do arithmetic, and how to get some results (i.e., get output). In this section
we look at a new feature: repetition. This is implemented by the extremely

56 CHAPTER 2: MATLAB Fundamentals

powerful for construct. We will first look at some examples of its use, followed
by explanations.

For starters, enter the following group of statements on the command line.
Enter the command format compact first to make the output neater:

for i = 1:5, disp(i), end

Now change it slightly to

for i = 1:3, disp(i), end

And what about

for i = 1:0, disp(i), end

Can you see what’s happening? The disp statement is repeated five times, three
times, and not at all.

2.7.1 Square roots with Newton’s method

The square root x of any positive number a may be found using only the arith-
metic operations of addition, subtraction, and division with Newton’s method.
This is an iterative (repetitive) procedure that refines an initial guess.

To introduce in a rather elementary way the notion of structured programming
(to be described in more detail in Chapter 3), let us consider the structure plan
of the algorithm to find a square root and a program with sample output for
a = 2.

Here is the structure plan:

1. Initialize a

2. Initialize x to a/2
3. Repeat 6 times (say) the following:

Replace x by (x + a/x)/2
Display x

4. Stop

Here is the program:

a = 2;
x = a/2;
disp([’The approach to sqrt(a) for a = ’, num2str(a)])

2.7 Repeating with for 57

for i = 1:6
x = (x + a / x) / 2;
disp(x)

end

disp(’Matlab’’s value: ’)
disp(sqrt(2))

Here is the output (after selecting format long):

The approach to sqrt(a) for a = 2
1.50000000000000
1.41666666666667
1.41421568627451
1.41421356237469
1.41421356237310
1.41421356237310

Matlab’s value:
1.41421356237310

The value of x converges to a limit rather quickly in this case,
√

a. Note that it
is identical to the value returned by MATLAB’s sqrt function. Most computers
and calculators use a similar method internally to compute square roots and
other standard mathematical functions.

The general form of Newton’s method is presented in Chapter 17.

2.7.2 Factorials!

Run the following program to generate a list of n and n! (“n factorial,” or
“n shriek”), where

n! = 1 × 2 × 3 × . . . × (n − 1) × n (2.1)

n = 10;
fact = 1;
for k = 1:n

fact = k * fact;
disp([k fact])

end

Experiment to find the largest value of n for which MATLAB can find the n fac-
torial. (You had better leave out the disp statement! Or you can move it from
above the end command to below it.)

58 CHAPTER 2: MATLAB Fundamentals

2.7.3 Limit of a sequence

for loops are ideal for computing successive members of a sequence (as in
Newton’s method). The following example also highlights a problem that
sometimes occurs when computing a limit. Consider the sequence

xn = an

n! , n = 1,2,3 . . .

where a is any constant and n! is the factorial function defined above. The
question is this: What is the limit of this sequence as n gets indefinitely large?
Let’s take the case a = 10. If we try to compute xn directly, we can get into
trouble, because n! grows very rapidly as n increases, and numerical overflow
can occur. However, the situation is neatly transformed if we spot that xn is
related to xn−1 as follows:

xn = axn−1

n
.

There are no numerical problems now.

The following program computes xn for a = 10 and increasing values of n.

a = 10;
x = 1;
k = 20; % number of terms

for n = 1:k
x = a * x / n;
disp([n x])

end

2.7.4 The basic for construct

In general the most common form of the for loop (for use in a program, not
on the command line) is

for index = j:k
statements;

end

or

for index = j:m:k
statements;

end

2.7 Repeating with for 59

Note the following points carefully:

■ j:k is a vector with elements j, j + 1, j + 2, . . . , k.
■ j:m:k is a vector with elements j, j + m,j + 2m, . . . , such that the last

element does not exceed k if m > 0 or is not less than k if m < 0.
■ index must be a variable. Each time through the loop it will contain the

next element of the vector j:k or j:m:k, and statements (there may be
one or more) are carried out for each of these values.
If the for construct has the form

for k = first:increment:last

The number of times the loop is executed may be calculated from the
following equation:

floor

(
last− first

increment

)
+ 1

where the MATLAB function floor(x) rounds x down toward −∞. This
value is called the iteration or trip count. As an example, let us consider the
statement for i = 1:2:6. It has an iteration count of

floor

(
6 − 1

2

)
+ 1 = floor

(
5

2

)
+ 1 = 3

Thus i takes the values 1, 3, 5. Note that if the iteration count is negative,
the loop is not executed.

■ On completion of the for loop the index contains the last value used.
■ If the vector j:k or j:m:k is empty, statements are not executed and con-

trol passes to the statement following end.
■ The index does not have to appear explicitly in statements. It is basically

a counter. In fact, if the index does appear explicitly in statements, the for

can often be vectorized (more details on this are given in Section 2.7.7).
A simple example of a more efficient (faster) program is as follows. The
examples with disp at the beginning of this section were for illustration
only; strictly, it would be more efficient to say (without “for”)

i = 1:5; disp(i’)

Can you see the difference? In this case i is assigned as a vector (hence,
this change vectorizes the original program).

■ It is good programming style to indent (tabulate) the statements inside a
for loop. You may have noticed that the Editor does this for you auto-
matically with a feature called smart indenting.

60 CHAPTER 2: MATLAB Fundamentals

2.7.5 for in a single line

If you insist on using for in a single line, here is the general form:

for index = j:k; statements; end

or

for index = j:m:k; statements; end

Note the following:

■ Don’t forget the commas (semicolons will also do if appropriate). If you
leave them out you will get an error message.

■ Again, statements can be one or more statements separated by commas or
semicolons.

■ If you leave out end, MATLAB will wait for you to enter it. Nothing will
happen until you do so.

2.7.6 More general for

A more general form of for is

for index = v

where v is any vector. The index moves through each element of the vector in
turn, providing a neat way of processing each item in a list. Other forms of the
for loop as well as the while loop will be discussed in Chapter 8.

2.7.7 Avoid for loops by vectorizing!

There are situations where a for loop is essential, as in many of the examples
in this section so far. However, given the way MATLAB has been designed, for
loops tend to be inefficient in terms of computing time. If you have written a
for loop that involves the index of the loop in an expression, it may be possible
to vectorize the expression, making use of array operations where necessary, as
the following examples show.

Suppose you want to evaluate

1 00 000∑
n=1

n

2.7 Repeating with for 61

(and can’t remember the formula for the sum). Here’s how to do it with a for
loop (run the program, which also times how long it takes):

t0 = clock;
s = 0;
for n = 1:100000

s = s + n;
end
etime(clock, t0)

The MATLAB function clock returns a six-element vector with the current date
and time in the format year, month, day, hour, minute, seconds. Thus, t0
records when the calculation starts.

The function etime returns the time in seconds elapsed between its two argu-
ments, which must be vectors as returned by clock. On a Pentium II, it returned
about 3.35 seconds, which is the total time for this calculation. (If you have a
faster PC, it should take less time.)

Now try to vectorize this calculation (before looking at the solution). Here it is:

t0 = clock;
n = 1:100000;
s = sum(n);
etime(clock, t0)

This way takes only 0.06 seconds on the same PC—more than 50 times faster!

There is a neater way of monitoring the time taken to interpret MATLAB state-
ments: the tic and toc function. Suppose you want to evaluate

1 00 000∑
n=1

1

n2

Here’s the for loop version:

tic
s = 0;
for n = 1:100000

s = s + 1/n^2;
end
toc

which takes about 6 seconds on the same PC. Once again, try to vectorize the
sum:

62 CHAPTER 2: MATLAB Fundamentals

tic

n = 1:100000;

s = sum(1./n.^2);

toc

The same PC gives a time of about 0.05 seconds for the vectorized version—
more than 100 times faster! (Of course, the computation time in these ex-
amples is small regardless of the method applied. However, learning how to
improve the efficiency of computation to solve more complex scientific or en-
gineering problems will be helpful as you develop good programming skills.
More details on good problem-solving and program design practices are in-
troduced at the end of this chapter and dealt with, in more detail, in the
next.)

Series with alternating signs are a little more challenging. This series sums to
ln(2) (the natural logarithm of 2):

1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · ·

Here’s how to find the sum of the first 9999 terms with a for loop (note how
to handle the alternating sign):

sign = -1;

s = 0;

for n = 1:9999

sign = -sign;

s = s + sign / n;

end

Try it. You should get 0.6932. MATLAB’s log(2) gives 0.6931. Not bad.

The vectorized version is as follows:

n = 1:2:9999;

s = sum(1./n - 1./(n+1))

If you time the two versions, you will again find that the vectorized form is
many times faster.

MATLAB’s functions naturally exploit vectorization wherever possible. For ex-
ample, prod(1:n) will find n! much faster than the code at the beginning of
this section (for large values of n).

2.8 Decisions 63

Exercises
Write MATLAB programs to find the following sums with for loops and by vectorization.
Time both versions in each case.

■ 12 + 22 + 32 + · · · + 1 0002 (sum is 333 833 500)

■ 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · · − 1

1003
(sum is 0.7849—converges slowly to π/4)

■ Sum the left-hand side of the series

1

12 · 32
+ 1

32 · 52
+ 1

52 · 72
+ · · · = π2 − 8

16
(sum is 0.1169—with 500 terms)

2.8 DECISIONS

The MATLAB function rand generates a random number in the range 0–1. Enter
the following two statements at the command line:

r = rand

if r > 0.5 disp(’greater indeed’), end

MATLAB should only display the message greater indeed if r is in fact greater
than 0.5 (check by displaying r). Repeat a few times—cut and paste from the
Command History window (make sure that a new r is generated each time).

As a slightly different but related exercise, enter the following logical expression
on the command line:

2 > 0

Now enter the logical expression -1 > 0. MATLAB gives a value of 1 to a logical
expression that is true and 0 to one that is false.

2.8.1 The one-line if statement

In the last example MATLAB has to make a decision; it must decide whether or
not r is greater than 0.5. The if construct, which is fundamental to all com-
puting languages, is the basis of such decision making. The simplest form of
if in a single line is

if condition; statements; end

Note the following points:

64 CHAPTER 2: MATLAB Fundamentals

Table 2.4 Relational operators.

Relational operator Meaning

< less than

<= less than or equal

== equal

~= not equal

> greater than

>= greater than or equal

■ condition is usually a logical expression (i.e., it contains a relational opera-
tor), which is either true or false. The relational operators are shown in
Table 2.4. MATLAB allows you to use an arithmetic expression for con-
dition. If the expression evaluates to 0, it is regarded as false; any other
value is true. This is not generally recommended; the if statement is eas-
ier to understand (for you or a reader of your code) if condition is a logical
expression.

■ If condition is true, statement is executed, but if condition is false, nothing
happens.

■ condition may be a vector or a matrix, in which case it is true only if all
of its elements are nonzero. A single zero element in a vector or matrix
renders it false.

if condition statement, end

Here are more examples of logical expressions involving relational operators,
with their meanings in parentheses:

b^2 < 4*a*c (b2 < 4ac)

x >= 0 (x ≥ 0)
a ~= 0 (a 	= 0)
b^2 == 4*a*c (b2 = 4ac)

Remember to use the double equal sign (==) when testing for equality:

if x == 0; disp(’x equals zero’); end

Exercises
The following statements all assign logical expressions to the variable x. See if you
can correctly determine the value of x in each case before checking your answer with
MATLAB.

(a) x = 3 > 2

(b) x = 2 > 3

2.8 Decisions 65

(c) x = -4 <= -3

(d) x = 1 < 1

(e) x = 2 ~= 2

(f) x = 3 == 3

(g) x = 0 < 0.5 < 1

Did you get item (f)? 3 == 3 is a logical expression that is true since 3 is undoubt-
edly equal to 3. The value 1 (for true) is therefore assigned to x. After executing these
commands type the command whos to find that the variable x is in the class of logical
variables.

What about (g)? As a mathematical inequality,

0 < 0.5 < 1

is undoubtedly true from a nonoperational point of view. However, as a MATLAB oper-
ational expression, the left-hand < is evaluated first, 0 < 0.5, giving 1 (true). Then the
right-hand operation is performed, 1 < 1, giving 0 (false). Makes you think, doesn’t it?

2.8.2 The if-else construct

If you enter the two lines

x = 2;
if x < 0 disp(’neg’), else disp(’non-neg’), end

do you get the message non-neg? If you change the value of x to −1 and execute
the if again, do you get the message neg this time? Finally, if you try

if 79 disp(’true’), else disp(’false’), end

do you get true? Try other values, including 0 and some negative values.

Most banks offer differential interest rates. Suppose the rate is 9% if the
amount in your savings account is less than $5000, but 12% otherwise. The
Random Bank goes one step further and gives you a random amount in your
account to start with! Run the following program a few times:

bal = 10000 * rand;

if bal < 5000
rate = 0.09;

else
rate = 0.12;

end

66 CHAPTER 2: MATLAB Fundamentals

newbal = bal + rate * bal;

disp(’New balance after interest compounded is:’)

format bank

disp(newbal)

Display the values of bal and rate each time from the command line to check
that MATLAB has chosen the correct interest rate.

The basic form of if-else for use in a program file is

if condition

statementsA

else

statementsB

end

Note that

■ statementsA and statementsB represent one or more statements.
■ If condition is true, statementsA are executed, but if condition is false, state-

mentsB are executed. This is essentially how you force MATLAB to choose
between two alternatives.

■ else is optional.

2.8.3 The one-line if-else statement

The simplest general form of if-else for use on one line is

if condition; statementA; else; statementB; end

Note the following:

■ Commas (or semicolons) are essential between the various clauses.
■ else is optional.
■ end is mandatory; without it, MATLAB will wait forever.

2.8.4 elseif

Suppose the Random Bank now offers 9% interest on balances of less than
$5000, 12% for balances of $5000 or more but less than $10,000, and 15%

2.8 Decisions 67

for balances of $10,000 or more. The following program calculates a customer’s
new balance after one year according to this scheme:

bal = 15000 * rand;

if bal < 5000
rate = 0.09;

elseif bal < 10000
rate = 0.12;

else
rate = 0.15;

end

newbal = bal + rate * bal;
format bank
disp(’New balance is:’)
disp(newbal)

Run the program a few times, and once again display the values of bal and rate
each time to convince yourself that MATLAB has chosen the correct interest
rate.

In general, the elseif clause is used:

if condition1
statementsA

elseif condition2
statementsB

elseif condition3
statementsC

...
else

statementsE
end

This is sometimes called an elseif ladder. It works as follows:

1. condition1 is tested. If it is true, statementsA are executed; MATLAB then
moves to the next statement after end.

2. If condition1 is false, MATLAB checks condition2. If it is true, statementsB
are executed, followed by the statement after end.

3. In this way, all conditions are tested until a true one is found. As soon as
a true condition is found, no further elseifs are examined and MATLAB
jumps off the ladder.

68 CHAPTER 2: MATLAB Fundamentals

FIGURE 2.2
Quadratic function with equal roots.

4. If none of the conditions is true, statements after else are executed.
5. Arrange the logic so that not more than one of the conditions is true.
6. There can be any number of elseifs, but at most one else.
7. elseif must be written as one word.
8. It is good programming style to indent each group of statements as

shown.

2.8.5 Logical operators

More complicated logical expressions can be constructed using the three logical
operators: & (and), | (or), and ~ (not). For example, the quadratic equation

ax2 + bx + c = 0

has equal roots, given by −b/(2a), provided that b2 − 4ac = 0 and a 	= 0
(Fig. 2.2). This translates into the following MATLAB statements:

if (b ^ 2 - 4*a*c == 0) & (a ~= 0)
x = -b / (2*a);

end

Of course, a, b, and c must be assigned values prior to reaching this set of
statements. Note the double equal sign in the test for equality; see Chapter 5
for more on logical operators.

2.8.6 Multiple ifs versus elseif

You could have written the Random Bank program as follows:

2.8 Decisions 69

bal = 15000 * rand;

if bal < 5000
rate = 0.09;

end
if bal >= 5000 & bal < 10000

rate = 0.12;
end
if bal >= 10000

rate = 0.15;
end

newbal = bal + rate * bal;
format bank
disp(’New balance is’)
disp(newbal)

However, this is inefficient since each of the three conditions is always tested,
even if the first one is true. In the earlier elseif version, MATLAB jumps off the
elseif ladder as soon as it finds a true condition. This saves a lot of computing
time (and is easier to read) if the if construct is in a loop that is repeated often.

Using this form, instead of the elseif ladder, you can make the following
common mistake:

if bal < 5000
rate = 0.09;

end
if bal < 10000

rate = 0.12;
end
if bal >= 10000

rate = 0.15;
end

Can you see why you get the wrong answer (1120 instead of 1090) if bal has
the value 1000? When designing the logic, you need to make sure that one and
only one of the conditions will be true at any one time.

Another mistake frequently made is to replace the second if with something
like

if 5000 < bal < 10000
rate = 0.12;

end

70 CHAPTER 2: MATLAB Fundamentals

which is compelling, as we saw above. However, whatever the value of bal, this
condition will always be true. Can you see why? (Note that if bal is greater
than 5000—for example, bal = 20000—the numerical truth value of the first
test, namely, 5000 < bal, is true and hence has the numerical value of 1 since
1 is always less than 10000, even if bal = 20000.)

2.8.7 Nested ifs

An if construct can contain further ifs and so on. This is called nesting and
should not be confused with the elseif ladder. You have to be careful with
elses. In general, else belongs to the most recent if that has not been ended.
The correct positioning of end is therefore very important, as the next example
demonstrates.

Suppose you want to compute the solution to a quadratic equation. You may
want to check whether a = 0 to prevent a division by zero. Your program could
contain the following nested ifs:

...
d = b ^ 2 - 4*a*c;
if a ~= 0
if d < 0
disp(’Complex roots’)

else
x1 = (-b + sqrt(d)) / (2*a);
x2 = (-b - sqrt(d)) / (2*a);

end % first end <<<<<<<<<<<<
end

The else belongs to the second if by default, as intended.

Now move the first end up as follows:

d = b ^ 2 {-} 4*a*c;
if a $^\sim$= 0
if d < 0
disp(’Complex roots’)

end \% first end moved up now <<<<<<<<<<<<
else
x1 = (-b + sqrt(d)) / (2*a);
x2 = (-b {-} sqrt(d)) / (2*a);

end

The end that has been moved now closes the second if. The result is that else
belongs to the first if instead of to the second one. Division by zero is therefore
guaranteed instead of prevented!

2.9 Complex numbers 71

2.8.8 Vectorizing ifs?

You may be wondering if for statements enclosing ifs can be vectorized. The
answer is yes, courtesy of logical arrays. Discussion of this rather interesting
topic is postponed until Chapter 5.

2.8.9 The switch statement

switch executes certain statements based on the value of a variable or expres-
sion. In this example it is used to decide whether a random integer is 1, 2, or 3
(see Section 5.1.5 for an explanation of this use of rand):

d = floor(3*rand) + 1
switch d
case 1

disp(’That’’s a 1!’);
case 2

disp(’That’’s a 2!’);
otherwise

disp(’Must be 3!’);
end

Multiple expressions can be handled in a single case statement by enclosing
the case expression in a cell array (see Chapter 10):

d = floor(10*rand);
switch d
case {2, 4, 6, 8}

disp(’Even’);
case {1, 3, 5, 7, 9}

disp(’Odd’);
otherwise

disp(’Zero’);
end

2.9 COMPLEX NUMBERS

If you are not familiar with complex numbers, you can safely skip this section.
However, it is useful to know what they are since the square root of a negative
number may come up as a mistake if you are trying to work only with real
numbers.

It is very easy to handle complex numbers in MATLAB. The special values i
and j stand for

√−1. Try sqrt(-1) to see how MATLAB represents complex
numbers.

72 CHAPTER 2: MATLAB Fundamentals

The symbol i may be used to assign complex values, for example,

z = 2 + 3*i

represents the complex number 2 + 3i (real part 2, imaginary part 3). You can
also input a complex value like this:

2 + 3*i

in response to the input prompt (remember, no semicolon). The imaginary
part of a complex number may also be entered without an asterisk, 3i.

All of the arithmetic operators (and most functions) work with complex num-
bers, such as sqrt(2 + 3*i) and exp(i*pi). Some functions are specific to
complex numbers. If z is a complex number, real(z), imag(z), conj(z), and
abs(z) all have the obvious meanings.

A complex number may be represented in polar coordinates:

z = reiθ

angle(z) returns θ between −π and π ; that is, atan2(imag(z), real(z)).
abs(z) returns the magnitude r .

Since eiθ gives the unit circle in polars, complex numbers provide a neat way
of plotting a circle. Try the following:

circle = exp(2*i*[1:360]*pi/360);
plot(circle)
axis(’equal’)

Note these points:

■ If y is complex, the statement plot(y) is equivalent to

plot(real(y), imag(y))

■ The statement axis(’equal’) is necessary to make circles look round; it
changes what is known as the aspect ratio of the monitor. axis(’normal’)
gives the default aspect ratio.

If you are using complex numbers, be careful not to use i or j for other
variables; the new values will replace the value of

√−1 and will cause nasty
problems.

For complex matrices, the operations ’ and .’ behave differently. The ’ op-
erator is the complex conjugate transpose, meaning rows and columns are inter-
changed and signs of imaginary parts are changed. The .’ operator, on the

Summary 73

other hand, does a pure transpose without taking the complex conjugate. To
see this, set up a complex matrix a with the statement

a = [1+i 2+2i; 3+3i 4+4i]

which results in

a =
1.0000 + 1.0000i 2.0000 + 2.0000i
3.0000 + 3.0000i 4.0000 + 4.0000i

The statement

a’

then results in the complex conjugate transpose

ans =
1.0000 - 1.0000i 3.0000 - 3.0000i
2.0000 - 2.0000i 4.0000 - 4.0000i

whereas the statement

a.’

results in the pure transpose

ans =
1.0000 + 1.0000i 3.0000 + 3.0000i
2.0000 + 2.0000i 4.0000 + 4.0000i

SUMMARY

■ The MATLAB desktop consists of a number of tools: the Command Win-
dow, the Workspace browser, the Current Directory browser, and the
Command History window.

■ MATLAB has a comprehensive online Help system. It can be accessed
through the Help button (?) on the desktop toolbar or the Help menu in
any tool.

■ A MATLAB program can be written in the Editor and cut and pasted to
the Command Window (or it can be executed from the editor by clicking
the green right arrow in the toolbar at the top of the Editor window).

74 CHAPTER 2: MATLAB Fundamentals

■ A script file is a text file (created by the MATLAB Editor or any other text
editor) containing a collection of MATLAB statements. In other words, it
is a program. The statements are carried out when the script file name is
entered at the prompt in the Command Window. A script file name must
have the .m extension. Script files are therefore also called M-files.

■ The recommended way to run a script is from the Current Directory
browser. The output from the script will then appear in the Command
Window.

■ A variable name consists only of letters, digits, and underscores, and must
start with a letter. Only the first 63 characters are significant. MATLAB is
case-sensitive by default. All variables created during a session remain
in the workspace until removed with clear. The command who lists the
variables in the workspace; whos gives their sizes.

■ MATLAB refers to all variables as arrays, whether they are scalars (single-
valued arrays), vectors, (1D arrays), or matrices (2D arrays).

■ MATLAB names are case-sensitive.
■ The Workspace browser on the desktop provides a handy visual represen-

tation of the workspace. Clicking a variable in it invokes the Array Editor,
which may be used to view and change variable values.

■ Vectors and matrices are entered in square brackets. Elements are sep-
arated by spaces or commas. Rows are separated by semicolons. The
colon operator is used to generate vectors, with elements increasing (de-
creasing) by regular increments (decrements). Vectors are row vectors by
default. Use the apostrophe transpose operator (’) to change a row vector
into a column vector.

■ An element of a vector is referred to by a subscript in parentheses. A sub-
script may itself be a vector. Subscripts always start at 1.

■ The diary command copies everything that subsequently appears in the
Command Window to the specified text file until the command diary
off is given.

■ Statements on the same line may be separated by commas or semicolons.
■ A statement may be continued to the next line with an ellipsis of at least

three dots.
■ Numbers may be represented in fixed-point decimal notation or in

floating-point scientific notation.
■ MATLAB has 14 data types. The default numeric type is double precision.

All mathematical operations are carried out in double precision.
■ The six arithmetic operators for scalars are +, -, *, \, /, and ^. They

operate according to rules of precedence.
■ An expression is a rule for evaluating a formula using numbers, opera-

tors, variables, and functions. A semicolon after an expression suppresses
display of its value.

■ Array operations are element by element between vectors or between
scalars and vectors. The array operations of multiplication, right and left
division, and exponentiation are indicated by .*, ./, .\, and .^ to

Exercises 75

distinguish them from vector and matrix operations of the same name.
They may be used to evaluate a formula repeatedly for some or all of the
elements of a vector. This is called vectorization of the formula.

■ disp is used to output (display) numbers and strings. num2str is useful
with disp for displaying strings and numbers on the same line.

■ The format command controls the way output is displayed.
■ When vectors are displayed, a common scale factor is used if the elements

are very large or very small, or differ greatly in magnitude.
■ The for statement is used to repeat a group of statements a fixed number

of times. If the index of a for statement is used in the expression being
repeated, the expression can often be vectorized, saving a great deal of
computing time.

■ tic and toc may be used as a stopwatch.
■ Logical expressions have the value true (1) or false (0) and are con-

structed with the six relational operators >, >=, <, <=, ==, and ~=.
Any expression that evaluates to zero is regarded as false. Any other value
is true. More complicated logical expressions can be formed from other
logical expressions using the logical operators & (and), | (or), and ~ (not).

■ if-else executes different groups of statements according to whether a
logical expression is true or false. The elseif ladder is a good way to
choose between a number of options, only one of which should be true
at a time.

■ switch enables choices to be made between discrete cases of a variable or
expression.

■ A string is a collection of characters enclosed in apostrophes.
■ Complex numbers may be represented using the special variables i and j,

which stand for the unit imaginary number
√−1.

EXERCISES

2.1 Decide which of the following numbers are not acceptable in MATLAB,
and state why:
(a) 9,87
(b) .0
(c) 25.82
(d) -356231
(e) 3.57*e2
(f) 3.57e2.1
(g) 3.57e+2
(h) 3,57e-2

2.2 State, giving reasons, which of the following are not valid MATLAB vari-
able names:
(a) a2
(b) a.2

76 CHAPTER 2: MATLAB Fundamentals

(c) 2a
(d) ’a’one
(e) aone
(f) _x_1
(g) miXedUp
(h) pay day
(i) inf
(j) Pay_Day
(k) min*2
(l) what

2.3 Translate the following expressions into MATLAB:

(a) p + w

u

(b) p + w

u + v

(c)
p + w

u+v

p + w
u−v

(d) x1/2

(e) yy+z

(f) xyz

(g) (xy)z

(h) x − x3/3! + x5/5!
2.4 Translate the following into MATLAB statements:

(a) Add 1 to the value of i and store the result in i.
(b) Cube i, add j to this, and store the result in i.
(c) Set g equal to the larger of the two variables e and f.
(d) If d is greater than 0, set x equal to −b.
(e) Divide the sum of a and b by the product of c and d, and store the

result in x.
2.5 What’s wrong with the following MATLAB statements?

(a) n + 1 = n;
(b) Fahrenheit temp = 9*C/5 + 32;
(c) 2 = x;

2.6 Write a program to calculate x, where

x = −b + √
b2 − 4ac

2a

and a = 2, b = −10, c = 12. (Answer: 3.0)
2.7 There are eight pints in a gallon and 1.76 pints in a liter. The volume of

a tank is given as 2 gallons and 4 pints. Write a script that inputs this
volume in gallons and pints and converts it to liters. (Answer: 11.36)

2.8 Write a program to calculate gasoline consumption. It should assign the
distance traveled (in kilometers) and the amount of gas used (in liters)
and compute the consumption in km/liter as well as in the more usual

Exercises 77

form of liters/100 km. Write some helpful headings so that your output
looks something like this:

Distance Liters used km/L L/100km
528 46.23 11.42 8.76

2.9 Write some statements in MATLAB that exchange the contents of two
variables a and b, using only one additional variable t.

2.10 Try Exercise 2.9 without using any additional variables!
2.11 If C and F are Celsius and Fahrenheit temperatures, respectively, the

formula for conversion from Celsius to Fahrenheit is F = 9C/5 + 32.
(a) Write a script that will ask you for the Celsius temperature and

display the Fahrenheit equivalent with some sort of comment,
such as

The Fahrenheit temperature is:...

Try it out on the following Celsius temperatures (answers in
parentheses): 0 (32), 100 (212), −40 (−40!), 37 (normal human
temperature: 98.6).

(b) Change the script to use vectors and array operations to compute
the Fahrenheit equivalents of Celsius temperatures ranging from
20◦ to 30◦ in steps of 1◦, and display them in two columns with a
heading, like this:

Celsius Fahrenheit
20.00 68.00
21.00 69.80
...
30.00 86.00

2.12 Generate a table of conversions from degrees (first column) to radians
(second column). Degrees should go from 0◦ to 360◦ in steps of 10◦.
Recall that π radians = 180◦.

2.13 Set up a matrix (table) with degrees in the first column from 0 to 360
in steps of 30, sines in the second column, and cosines in the third
column. Now try to add tangents in the fourth column. Can you figure
out what’s going on? Try some variations of the format command.

2.14 Write some statements that display a list of integers from 10 to 20 in-
clusive, each with its square root next to it.

2.15 Write a single statement to find and display the sum of the successive
even integers 2, 4, . . . , 200. (Answer: 10,100)

2.16 Ten students in a class take a test. The marks are out of 10. All the marks
are entered in a MATLAB vector, marks. Write a statement to find and
display the average mark. Try it on the following:

5 8 0 10 3 8 5 7 9 4 (Answer: 5.9)

Hint: Use the mean function.

78 CHAPTER 2: MATLAB Fundamentals

2.17 What are the values of x and a after the following statements have been
executed?
(a) a = 0;
(b) i = 1;
(c) x = 0;
(d) a = a + i;
(e) x = x + i / a;
(f) a = a + i;
(g) x = x + i / a;
(h) a = a + i;
(i) x = x + i / a;
(j) a = a + i;
(k) x = x + i / a;

2.18 Rewrite the statements in Exercise 2.17 more economically by using a
for loop. Can you do even better by vectorizing the code?

2.19 Work out by hand the output of the following script for n = 4:

n = input(’Number of terms? ’);
s = 0;

for k = 1:n
s = s + 1 / (k ^ 2);

end;
disp(sqrt(6 * s))

If you run this script for larger and larger values of n, you will find that
the output approaches a well-known limit. Can you figure out what it
is? Now rewrite the script using vectors and array operations.

2.20 Work through the following script by hand. Draw up a table of the
values of i, j, and m to show how they change while the script executes.
Check your answers by running the script.

v = [3 1 5];
i = 1;

for j = v
i = i + 1;
if i == 3

i = i + 2;
m = i + j;

end
end

2.21 The steady-state current I flowing in a circuit that contains a resistance
R = 5, capacitance C = 10, and inductance L = 4 in series is given by

I = E√
R2 + (2πωL − 1−

2πωC−)2

Exercises 79

where E = 2 and ω = 2 are the input voltage and angular frequency,
respectively. Compute the value of I . (Answer: 0.0396)

2.22 The electricity accounts of residents in a very small town are calculated
as follows:

■ If 500 units or fewer are used, the cost is 2 cents per unit.
■ If more than 500 but not more than 1000 units are used, the cost

is $10 for the first 500 units and 5 cents for every unit in excess of
500.

■ If more than 1000 units are used, the cost is $35 for the first 1000
units plus 10 cents for every unit in excess of 1000.

■ A basic service fee of $5 is charged, no matter how much electricity
is used.

Write a program that enters the following five consumptions into a vec-
tor and uses a for loop to calculate and display the total charge for each
one: 200, 500, 700, 1000, 1500. (Answers: $9, $15, $25, $40, $90)

2.23 Suppose you deposit $50 in a bank account every month for a year.
Every month, after the deposit has been made, interest at the rate of
1% is added to the balance: After one month the balance is $50.50,
and after two months it is $101.51. Write a program to compute and
print the balance each month for a year. Arrange the output to look
something like this:

MONTH MONTH-END BALANCE

1 50.50
2 101.51
3 153.02
...

12 640.47

2.24 If you invest $1000 for one year at an interest rate of 12%, the return is
$1120 at the end of the year. But if interest is compounded at the rate of
1% monthly (i.e., 1/12 of the annual rate), you get slightly more interest
because it is compounded. Write a program that uses a for loop to
compute the balance after a year of compounding interest in this way.
The answer should be $1126.83. Evaluate the formula for this result
separately as a check: 1000 × 1.0112.

2.25 A plumber opens a savings account with $100,000 at the beginning of
January. He then makes a deposit of $1000 at the end of each month
for the next 12 months (starting at the end of January). Interest is cal-
culated and added to his account at the end of each month (before
the $1000 deposit is made). The monthly interest rate depends on the
amount A in his account at the time interest is calculated, in the fol-
lowing way:

80 CHAPTER 2: MATLAB Fundamentals

A ≤ 1 10 000: 1%
1 10 000 < A ≤ 1 25 000: 1.5%

A > 1 25 000: 2%

Write a program that displays, under suitable headings, for each of the
12 months, the situation at the end of the month as follows: the num-
ber of the month, the interest rate, the amount of interest, and the new
balance. (Answer: Values in the last row of output should be 12, 0.02,
2534.58, 130263.78).

2.26 It has been suggested that the population of the United States may be
modeled by the formula

P(t) = 19 72 73 000

1 + e−0.03134(t−1913.25)

where t is the date in years. Write a program to compute and display
the population every ten years from 1790 to 2000. Try to plot a graph
of the population against time as well. Use your program to find out if
the population ever reaches a “steady state” (i.e., stops changing).

2.27 A mortgage bond (loan) of amount L is obtained to buy a house. The
interest rate r is 15%. The fixed monthly payment P that will pay off
the bond loan over N years is given by the formula

P = rL(1 + r/12)12N

12[(1 + r/12)12N − 1]
(a) Write a program to compute and print P if N = 20 and the bond

is for $50,000. You should get $658.39.
(b) See how P changes with N by running the program for differ-

ent values of N (use input). Can you find a value for which the
payment is less than $625?

(c) Go back to N = 20 and examine the effect of different interest
rates. You should see that raising the interest rate by 1% (0.01)
increases the monthly payment by about $37.

2.28 It is useful to work out how the period of a bond repayment changes if
you increase or decrease P . The formula for N is given by

N =
ln

(
P

P−rL/12−
)

12 ln(1 + r/12)

(a) Write a new program to compute this formula. Use the built-in
function log for the natural logarithm ln. How long will it take to
pay off a loan of $50,000 at $800 a month if the interest remains
at 15%? (Answer: 10.2 years—nearly twice as fast as when paying
$658 a month.)

2.A Supplementary material 81

(b) Use your program to find out by trial and error the smallest
monthly payment that will pay off the loan this side of eternity.
Hint: recall that it is not possible to find the logarithm of a nega-
tive number, so P must not be less than rL/12.

APPENDIX 2.A SUPPLEMENTARY MATERIAL

Supplementary material related to this chapter can be found online at https://
doi.org/10.1016/B978-0-08-102997-8.00008-7.

https://doi.org/10.1016/B978-0-08-102997-8.00008-7
https://doi.org/10.1016/B978-0-08-102997-8.00008-7

CHAPTER 3

Program Design and Algorithm Development

CONTENTS

The program
design process . 84
The projectile
problem 87

Programming
MATLAB
functions 92
Inline objects:
Harmonic
oscillators 92
MATLAB function:
y = f (x) 94

Summary 96

Exercises 97

THE OBJECTIVES OF THIS CHAPTER ARE TO INTRODUCE
YOU TO:

■ Program design
■ User-defined MATLAB functions

This chapter is an introduction to the design of computer programs. The top-
down design process is elaborated to help you think about good problem-
solving strategies as they relate to the design of procedures for using software
like MATLAB. We will consider the design of your own toolbox to be included
among those already available with your version of MATLAB, such as Simulink,
Symbolic Math, and Controls System. This is a big advantage of MATLAB (and
tools like it); it allows you to customize your working environment to meet
your own needs. It is not only the “mathematics handbook” of today’s stu-
dent, engineer, and scientist, it is also a useful environment to develop software
tools that go beyond any handbook to help you to solve relatively complicated
mathematical problems.

In the first part of this chapter we discuss the design process. In the second part
we examine the structure plan—the detailed description of the algorithm to be
implemented. We will consider relatively simple programs. However, the pro-
cess described is intended to provide insight into what you will confront when
you deal with more complex engineering, scientific, and mathematical prob-
lems during the later years of your formal education, your life-long learning,
and your continuing professional education. In the third part we introduce the
basic construct of a MATLAB function to help you develop more sophisticated
programs.

To be sure, the examples examined so far have been logically simple. This is
because we have been concentrating on the technical aspects of writing correct
MATLAB statements. It is very important to learn how MATLAB does the arith-
metic operations that form the basis of more complex programs. To design a
successful program you need to understand a problem thoroughly and break
it down into its most fundamental logical stages. In other words, you have to
develop a systematic procedure or algorithm for solving it.

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00009-9
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

83

https://doi.org/10.1016/B978-0-08-102997-8.00009-9

84 CHAPTER 3: Program Design and Algorithm Development

FIGURE 3.1
Creating your work folder: In your Users-Documents folder.

There are a number of methods that may assist in algorithm development. In
this chapter we look at one, the structure plan. Its development is the primary
part of the software (or code) design process because it is the steps in it that
are translated into a language the computer can understand—for example, into
MATLAB commands.

3.1 THE PROGRAM DESIGN PROCESS

Useful utilities translated into MATLAB (either sequences of command lines
or functions, which are described later in the text) and saved as M-files in your
working directory are your primary goals (see Fig. 3.1). There are numerous
toolboxes available through MathWorks (among others) on a variety of engi-
neering and scientific topics. A great example is the Aerospace Toolbox, which
provides reference standards, environmental models, and aerodynamic coef-
ficients importing for advanced aerospace engineering designs. Explore the
MathWorks Web site for products available (http://www.mathworks.com/).

In your working directory, (e.g., the folder we are currently in, viz., \MATLAB),
you will begin to accumulate a set of M-files that you have created as you use
MATLAB.

Certainly, you want to be sure that the tools you save are reasonably well writ-
ten (i.e., reasonably well designed). What does it mean to create well-written
programs?

The goals in designing a software tool are that it works, it can easily be read
and understood, and, hence, it can be systematically modified when required.

http://www.mathworks.com/

3.1 The program design process 85

FIGURE 3.2
Creating your work folder.

FIGURE 3.3
Creating your work folder: Entering, saving and executing a MATLAB M-file.

For programs to work well they must satisfy the requirements associated with
the problem or class of problems they are intended to solve. The specifications
(i.e., the detailed description of purpose, or function, inputs, method of pro-
cessing, outputs, and any other special requirements) must be known to design
an effective algorithm or computer program, which must work completely and
correctly. That is, all options should be usable without error within the limits
of the specifications (see Figs. 3.2 and 3.3).

86 CHAPTER 3: Program Design and Algorithm Development

The program must be readable and hence clearly understandable. Thus, it is
useful to decompose major tasks (or the main program) into subtasks (or sub-
programs) that do specific parts of it. It is much easier to read subprograms,
which have fewer lines, than one large main program that doesn’t segregate
the subtasks effectively, particularly if the problem to be solved is relatively
complicated. Each subtask should be designed so that it can be evaluated in-
dependently before it is implemented in the larger scheme of things (i.e., in
the main program plan).

A well written code, when it works, is much more easily evaluated in the testing
phase of the design process. If changes are necessary to correct sign mistakes
and the like, they can be easily implemented. One thing to keep in mind when
you add comments to describe the process programmed is this: Add enough
comments and references so that a year from the time you write the program
you know exactly what was done and for what purpose. Note that the first few
comment lines in a script file are displayed in the Command Window when
you type help followed by the name of your file (file naming is also an art).

The design process1 is outlined next. The steps may be listed as follows:

Step 1 Problem analysis. The context of the proposed investigation must be es-
tablished to provide the proper motivation for the design of a computer
program. The designer must fully recognize the need and must develop
an understanding of the nature of the problem to be solved.

Step 2 Problem statement. Develop a detailed statement of the mathematical
problem to be solved with a computer program.

Step 3 Processing scheme. Define the inputs required and the outputs to be
produced by the program.

Step 4 Algorithm. Design the step-by-step procedure in a top-down process that
decomposes the overall problem into subordinate problems. The sub-
tasks to solve the latter are refined by designing an itemized list of steps
to be programmed. This list of tasks is the structure plan and is written
in pseudo-code (i.e., a combination of English, mathematics, and antic-
ipated MATLAB commands). The goal is a plan that is understandable
and easily translated into a computer language.

Step 5 Program algorithm. Translate or convert the algorithm into a computer
language (e.g., MATLAB) and debug the syntax errors until the tool exe-
cutes successfully.

Step 6 Evaluation. Test all of the options and conduct a validation study of the
program. For example, compare results with other programs that do sim-
ilar tasks, compare with experimental data if appropriate, and compare
with theoretical predictions based on theoretical methodology related to

1For a more detailed description of software design technology see, for example, C++ Data Structures by
Nell Dale (Jones and Bartlett, 1998).

3.1 The program design process 87

the problems to be solved. The objective is to determine that the sub-
tasks and the overall program are correct and accurate. The additional
debugging in this step is to find and correct logical errors (e.g., mistyping
of expressions by putting a plus sign where a minus sign was supposed
to be) and runtime errors that may occur after the program successfully
executes (e.g., cases where division by zero unintendedly occurs).

Step 7 Application. Solve the problems the program was designed to solve. If
the program is well designed and useful, it can be saved in your working
directory (i.e., in your user-developed toolbox) for future use.

3.1.1 The projectile problem

Step 1. Let us consider the projectile problem examined in first-semester
physics. It is assumed that engineering and science students understand this
problem (if it is not familiar to you, find a physics text that describes it or
search the Web; the formulas that apply will be provided in step 2).

In this example we want to calculate the flight of a projectile (e.g., a golf
ball) launched at a prescribed speed and a prescribed launch angle. We want
to determine the trajectory of the flight path and the horizontal distance the
projectile (or object) travels before it hits the ground. Let us assume zero air
resistance and a constant gravitational force acting on the object in the oppo-
site direction of the vertical distance from the ground. The launch angle, θo,
is defined as the angle measured from the horizontal (ground plane) upward
toward the vertical direction, 0 < θo ≤ π/2, where θo = 0 implies a launch in
the horizontal direction and θo = π/2 implies a launch in the vertical direction
(i.e., in the opposite direction of gravity). If g = 9.81 m/s2 is used as the accel-
eration of gravity, the launch speed, Vo, must be entered in units of m/s. Thus,
if the time, t > 0, is the time in seconds (s) from the launch time of t = 0, the
distance traveled in x (the horizontal direction) and y (the vertical direction)
is in meters (m).

We want to determine the time it takes the projectile, from the start of motion,
to hit the ground, the horizontal distance traveled, and the shape of the trajec-
tory. In addition, we want to plot the speed of the projectile versus the angular
direction of this vector. We need, of course, the theory (or mathematical ex-
pressions) that describes the solution to the zero-resistance projectile problem
in order to develop an algorithm to obtain solutions to it.

Step 2. The mathematical formulas that describe the solution to the projectile
problem are provided in this step. Given the launch angle and launch speed,
the horizontal distance traveled from x = y = 0, which is the coordinate loca-
tion of the launcher, is

xmax = 2
V 2

o

g
sin θo cos θo

88 CHAPTER 3: Program Design and Algorithm Development

The time from t = 0 at launch for the projectile to reach xmax (i.e., its range) is

txmax = 2
Vo

g
sin θo

The object reaches its maximum altitude,

ymax = V 2
o

2g
sin2 θo

at time

tymax = Vo

g
sin θo

The horizontal distance traveled when the object reaches the maximum alti-
tude is xymax = xmax/2.0.

The trajectory (or flight path) is described by the following pair of coordinates
at a given instant of time between t = 0 and txmax :

x = Vot cos θo

y = Vot sin θo − g

2
t2

We need to solve these equations over the range of time 0 < t ≤ txmax for pre-
scribed launch conditions Vo > 0 and 0 < θ ≤ π/2. Then the maximum values
of the altitude and the range are computed along with their respective arrival
times. Finally, we want to plot V versus θ , where

V =
√

(Vo cos θo)2 + (Vo sin θo − gt)2

and

θ = tan−1
(

Vy

Vx

)

We must keep in mind when we study the solutions based on these formulas
that the air resistance was assumed negligible and the gravitational acceleration
was assumed constant.

Step 3. The required inputs are g, Vo, θo, and a finite number of time steps
between t = 0 and the time the object returns to the ground. The outputs are
the range and time of flight, the maximum altitude and the time it is reached,
and the shape of the trajectory in graphical form.

3.1 The program design process 89

Steps 4 and 5. The algorithm and structure plan developed to solve this problem
are given next as a MATLAB program, because it is relatively straightforward
and the translation to MATLAB is well commented with details of the approach
applied to its solution (i.e., the steps of the structure plan are enumerated).
This plan, and M-file, of course, is the summary of the results developed by
trying a number of approaches during the design process, and thus discard-
ing numerous sheets of scratch paper before summarizing the results! (There
are more explicit examples of structure plans for your review and investigation
in the next section of this chapter.) Keep in mind that it was not difficult to
enumerate a list of steps associated with the general design process, that is,
the technical problem solving. However, it is certainly not so easy to imple-
ment the steps because they draw heavily on your technical-solution design
experience. Hence, we must begin by studying the design of relatively simple
programs like the one described in this section.

The evaluated and tested code is as follows:

% The proctile problem with zero air resistance
% in a gravitational field with constant g.
% Written by Daniel T. Valentine .. September 2006
% Revised by D. T. Valentine 2012/2016/2018
% An eight-step structure plan applied in MATLAB:
%
% 1. Define the input variables.
%
g = 9.81; % Gravity in m/s/s.
vo = input(’What is the launch speed in m/s? ’)
tho = input(’What is the launch angle in degrees? ’)
tho = pi*tho/180; % Conversion of degrees to radians.
%
% 2. Calculate the range and duration of the flight.
%
txmax = (2*vo/g) * sin(tho);
xmax = txmax * vo * cos(tho);
%
% 3. Calculate the sequence of time steps to compute
% trajectory.
%
dt = txmax/100;
t = 0:dt:txmax;
%
% 4. Compute the trajectory.
%
x = (vo * cos(tho)) .* t;
y = (vo * sin(tho)) .* t - (g/2) .* t.^2;

90 CHAPTER 3: Program Design and Algorithm Development

%
% 5. Compute the speed and angular direction of the
% projectile. Note that vx = dx/dt, vy = dy/dt.
%
vx = vo * cos(tho);
vy = vo * sin(tho) - g .* t;
v = sqrt(vx.*vx + vy.*vy); % Speed
th = (180/pi) .* atan2(vy,vx); % Angular direction
%
% 6. Compute the time and horizontal distance at the
% maximum altitude.
%
tymax = (vo/g) * sin(tho);
xymax = xmax/2;
ymax = (vo/2) * tymax * sin(tho);
%
% 7. Display in the Command Window and on figures the ouput.
%
disp([’Range in meters = ’,num2str(xmax),’,’ ...

’ Duration in seconds = ’, num2str(txmax)])
disp(’ ’)
disp([’Maximum altitude in meters = ’,num2str(ymax), ...

’, Arrival at this altitude in seconds = ’, num2str(tymax)])
plot(x,y,’k’,xmax,y(size(t)),’o’,xmax/2,ymax,’o’)
title([’Projectile flight path: v_o = ’, num2str(vo),’ m/s’ ...

’, \theta_o = ’, num2str(180*tho/pi),’ degrees’])
xlabel(’x’), ylabel(’y’) % Plot of Figure 1.
figure % Creates a new figure.
plot(v,th,’r’)
title(’Projectile speed vs. angle’)
xlabel(’V’), ylabel(’\theta’) % Plot of Figure 2.
%
% 8. Stop.

Steps 6 and 7. The program was evaluated by executing a number of values of
the launch angle and launch speed within the required specifications. The an-
gle of 45 degrees was checked to determine that the maximum range occurred
at this angle for all specified launch speeds. This is well known for the zero air
resistance case in a constant g force field. Executing this code for Vo = 10 m/s
and θo = 45 degrees, the trajectory and the plot of orientation versus speed in
Figs. 3.4 and 3.5, respectively, were produced.

How can you find additional examples of MATLAB programs (good ones or
otherwise) to help develop tools to solve your own problems? We all recog-
nize that examples aren’t a bad way of learning to use tools. New tools are

3.1 The program design process 91

FIGURE 3.4
Projectile trajectory.

FIGURE 3.5
Projectile angle versus speed.

continually being developed by the users of MATLAB. If one proves to be of
more general use, MathWorks may include it in their list of products (if, of
course, the tools’ author desires this). There are also many examples of use-
ful scripts that are placed on the Web for anyone interested in them. They, of
course, must be evaluated carefully since it is the user’s responsibility, not the
creator’s, to ensure the correctness of their results. This responsibility holds for
all tools applied by the engineer and the scientist. Hence, it is very important
(just as in using a laboratory apparatus) that users prove to themselves that the
tool they are using is indeed valid for the problem they are trying to solve.

To illustrate how easy it is to find examples of scripts, the author typed
MATLAB examples in one of the available search engines and found the follow-
ing (among many others):

92 CHAPTER 3: Program Design and Algorithm Development

t = 0:.1:2*pi;
subplot(2,2,1)
plot(t,sin(t))
subplot(2,2,2)
plot(t,cos(t))
subplot(2,2,3)
plot(t,exp(t))
subplot(2,2,4)
plot(t,1./(1+t.^2))

This script illustrates how to put four plots in a single figure window. To check
that it works, type each line in the Command Window followed by Enter. Note
the position of each graphic; location is determined by the three integers in the
subplot function list of arguments. Search Help via the question mark (?) for
more information on subplot.

3.2 PROGRAMMING MATLAB FUNCTIONS

MATLAB enables you to create your own function M-files. A function M-file is
similar to a script file in that it also has a .m extension. However, a function
M-file differs from a script file in that a function M-file communicates with the
MATLAB workspace only through specially designated input and output argu-
ments. Functions are indispensable tools when it comes to breaking a problem
down into manageable logical pieces.

Short mathematical functions may be written as one-line inline objects. This
capability is illustrated by example in the next subsection. In the subsequent
subsection essential ideas embodied in the creation of a MATLAB function
M-file will be introduced. (Further details on writing functions are provided in
Chapter 10.)

3.2.1 Inline objects: Harmonic oscillators

If two coupled harmonic oscillators, e.g., two masses connected with a spring
on a very smooth table, are considered as a single system, the output of the
system as a function of time t could be given by something like

h(t) = cos(8t) + cos(9t). (3.1)

You can represent h(t) at the command line by creating an inline object as fol-
lows:

h = inline(’cos(8*t) + cos(9*t)’);

Now write some MATLAB statements in the Command Window which use
your function h to draw the graph in Fig. 3.6 e.g.,

3.2 Programming MATLAB functions 93

FIGURE 3.6
cos(8t) + cos(9t).

x = 0 : 20/300 : 20;
plot(x, h(x)), grid

Note:

■ The variable t in the inline definition of h is the input argument. It is
essentially a ‘dummy’ variable, and serves only to provide input to the
function from the outside world. You can use any variable name here; it
doesn’t have to be the same as the one used when you invoke (use) the
function.

■ You can create functions of more than one argument with inline. For
example,

f1 = inline(’x.^2 + y.^2’, ’x’, ’y’);
f1(1, 2)
ans =

5

Note that the input values of x and y can be arrays and, hence, the output
f1 will be an array of the same size as x and y. For example, after executing
the previous two command lines to get the ans = 5, try the following:

x = [1 2 3; 1 2 3]; y = [4 5 6; 4 5 6];
f1(x,y)
ans =

17 29 45
17 29 45

The answer is an element-by-element operation that leads to the value of
the function for each combination of like-located array elements.

94 CHAPTER 3: Program Design and Algorithm Development

3.2.2 MATLAB function: y = f (x)

The essential features of a MATLAB function are embodied in the following
example. Let us consider the function y defined by the relationship y = f (x),
i.e., y is a function of x. The construction of a function file starts with the
declaration of a function command. This is followed by the formula that is the
function of interest that you wish to substitute a particular value of x to get the
corresponding value of y. The structure plan for the evaluation of a particular
algebraic function is as follows:

1. function y = f(x) % where x is the input and y is the output.
2. y = x.^3 - 0.95*x;
3. end % This is not necessary to include; however, it plays the

role of STOP.

The function M-file created based on this plan is as follows;

function y = f(x) % where x is the input and y is the output.
y = x.^3 - 0.95*x;
end % This is not necessary to include; however, it plays the role

of STOP.

It was saved as f.m. After saving it, it was used as follows in the Command
Window. Try the following example:

>> f(2)
ans =

6.1000

Let us next create a function that takes as input the three coefficients of the
quadratic equation, viz.,

ax2 + bx + c = 0.

We want to determine the two roots of this equation, i.e., we want to determine
the solution to this equation. One way of dealing with this problem is to apply
the known solutions of the quadratic equation. Let us do this by creating a
function file by following the structure plan for the complete algorithm for
finding the solution(s) x, given the coefficients a, b and c given as follows:

QUADRATIC EQUATION STRUCTURE PLAN

1. Start
2. Input data (a, b, c)

3.2 Programming MATLAB functions 95

3. If a = 0 then
If b = 0 then

If c = 0 then
Display ‘Solution indeterminate’

else
Display ‘There is no solution’

else
x = −c/b

Display x (only one root: equation is linear)
else if b2 < 4ac then

Display ‘Complex roots’
else if b2 = 4ac then

x = −b/(2a)

Display x (equal roots)
else

x1 = (−b + √
b2 − 4ac)/(2a)

x2 = (−b − √
b2 − 4ac)/(2a)

Display x1, x2
4. Stop.

A function file based on this plan is as follows:

function x = quadratic(a,b,c)
% Equation:
% a*x^2 + b*x + c = 0
% Input: a,b,c
% Output: x = [x1 x2], the two solutions of
% this eequation.
if a==0 & b==0 & c==0

disp(’ ’)
disp(’Solution indeterminate’)

elseif a==0 & b==0
disp(’ ’)
disp(’There is no solution’)

elseif a==0
disp(’ ’)
disp(’Only one root: equation is linear’)
disp(’ x ’)
x1 = -c/b;
x2 = NaN;

elseif b^2 < 4*a*c
disp(’ ’)
disp(’ x1, x2 are complex roots ’)
disp(’ x1 x2’)

96 CHAPTER 3: Program Design and Algorithm Development

x1 = (-b + sqrt(b^2 - 4*a*c))/(2*a);
x2 = (-b - sqrt(b^2 - 4*a*c))/(2*a);

elseif b^2 == 4*a*c
x1 = -b/(2*a);
x2 = x1;
disp(’equal roots’)
disp(’ x1 x2’)

else
x1 = (-b + sqrt(b^2 - 4*a*c))/(2*a);
x2 = (-b - sqrt(b^2 - 4*a*c))/(2*a);
disp(’ x1 x2’)

end
if a==0 & b==0 & c==0
elseif a==0 & b==0
else

disp([x1 x2]);
end
end

This function is saved with the file name quadratic.m.

>> a = 4; b = 2; c = -2;
>> quadratic(a,b,c)

x1 x2
0.5000 -1.0000

>> who
Your variables are:
a b c

The two roots in this case are real. It is a useful exercise to test all possibilities
to evaluate whether or not this function successfully deals with all quadratic
equations with constant coefficients. The purpose of this example was to il-
lustrate how to construct a function file. Note that the only variables in the
Workspace are the coefficients a b c. The variables defined and needed in the
function are not included in the Workspace. Hence, functions do not clutter
the Workspace with the variables only needed in the function itself to execute
the commands within it.

SUMMARY

■ An algorithm is a systematic logical procedure for solving a problem.
■ A structure plan is a representation of an algorithm in pseudo-code.
■ A function M-file is a script file designed to handle a particular task that

may be activated (invoked) whenever needed.

Exercises 97

EXERCISES

The problems in these exercises should all be structure-planned before being
written up as MATLAB programs (where appropriate).

3.1 The structure plan in this example defines a geometric construction.
Carry out the plan by sketching the construction:

1. Draw two perpendicular x- and y-axes
2. Draw the points A (10, 0) and B (0, 1)
3. While A does not coincide with the origin repeat: Draw a

straight line joining A and B Move A one unit to the left along
the x-axis Move B one unit up on the y-axis

4. Stop
3.2 Consider the following structure plan, where M and N represent

MATLAB variables:
1. Set M = 44 and N = 28
2. While M not equal to N repeat: While M > N repeat: Replace

value of M by M − N While N > M repeat: Replace value of N

by N − M

3. Display M

4. Stop
(a) Work through the structure plan, sketching the contents of

M and N during execution. Give the output.
(b) Repeat (a) for M = 14 and N = 24.
(c) What general arithmetic procedure does the algorithm carry

out (try more values of M and N if necessary)?
3.3 Write a program to convert a Fahrenheit temperature to Celsius. Test it

on the data in Exercise 2.11 (where the reverse conversion is done).
3.4 Write a script that inputs any two numbers (which may be equal) and

displays the larger one with a suitable message or, if they are equal,
displays a message to that effect.

3.5 Write a script for the general solution to the quadratic equation ax2 +
bx + c = 0. Use the structure plan in Section 3.2.2. Your script should
be able to handle all possible values of the data a, b, and c. Try it out
on the following values:
(a) 1, 1, 1 (complex roots)
(b) 2, 4, 2 (equal roots of −1.0)
(c) 2, 2, −12 (roots of 2.0 and −3.0)

The structure plan in Section 3.2.2 is for programming languages that
cannot handle complex numbers. MATLAB can. Adjust your script so
that it can also find complex roots. Test it on case (a); the roots are
−0.5 ± 0.866i.

3.6 Develop a structure plan for the solution to two simultaneous linear
equations (i.e., the equations of two straight lines). Your algorithm
must be able to handle all possible situations; that is, lines intersecting,

98 CHAPTER 3: Program Design and Algorithm Development

parallel, or coincident. Write a program to implement your algorithm,
and test it on some equations for which you know the solutions, such as

x + y = 3

2x − y = 3

(x = 2, y = 1).
Hint: Begin by deriving an algebraic formula for the solution to the
system:

ax + by = c

dx + ey = f

The program should input the coefficients a, b, c, d, e, and f .
We will see in Chapter 16 that MATLAB has a very elegant way of solv-
ing systems of equations directly, using matrix algebra. However, it is
good for the development of your programming skills to do it the long
way, as in this exercise.

3.7 We wish to examine the motion of a damped harmonic oscillator. The
small amplitude oscillation of a unit mass attached to a spring is given
by the formula y = e−(R/2)t sin(ω1t), where ω2

1 = ω2
o −R2/4 is the square

of the natural frequency of the oscillation with damping (i.e., with re-
sistance to motion); ω2

o = k is the square of the natural frequency of
undamped oscillation; k is the spring constant; and R is the damping
coefficient. Consider k = 1 and vary R from 0 to 2 in increments of 0.5.
Plot y versus t for t from 0 to 10 in increments of 0.1.
Hint: Develop a solution procedure by working backwards through the
problem statement. Starting at the end of the problem statement, the
solution procedure requires the programmer to assign the input vari-
ables first followed by the execution of the formula for the amplitude
and ending with the output in graphical form.

3.8 Let’s examine the shape of a uniform cable hanging under its own
weight. The shape is described by the formula y = cosh(x/c). This shape
is called a uniform catenary. The parameter c is the vertical distance
from y = 0 where the bottom of the catenary is located. Plot the shape
of the catenary between x = −10 and x = 10 for c = 5. Compare this
with the same result for c = 4.
Hint: The hyperbolic cosine, cosh, is a built-in MATLAB function that is
used in a similar way to the sine function, sin.

CHAPTER 4

MATLAB Functions and Data Import-Export
Utilities

CONTENTS

Common
functions 99

Importing and
exporting data .. 104
The load and save
commands 104
Exporting text
(ASCII) data........... 104
Importing text
(ASCII) data........... 105
Exporting binary
data..................... 105
Importing binary
data..................... 106

Summary 106
Exercises 106

THE OBJECTIVES OF THIS CHAPTER ARE:

(1) To enable you to become familiar with some of the more common
MATLAB functions.

(2) To introduce you briefly to ways of importing and exporting data in
and out of the MATLAB workspace using:
■ The load and save commands.
■ The Import Wizard.
■ The low-level file input/output (I/O) functions.

At this point you should be able to write a MATLAB program which inputs
data, performs simple arithmetic operations on the data, perhaps involving
loops and decisions, and displays the results of the computation in a compre-
hensible form. However, more interesting problems in science and engineering
are likely to involve special mathematical functions like sines, cosines, loga-
rithms, etc. MATLAB comes with a large collection of such functions; we have
seen some of them already. This chapter introduces you to the more common
functions available in MATLAB. In addition, you may wish to import data to be
plotted or operated on mathematically, and export data for future use. Hence,
this chapter also introduces you to the importing of data into the MATLAB
workspace from various sources. It also discusses the exporting of data to files
in your work directory for later use with MATLAB or with other software tools.

4.1 COMMON FUNCTIONS

Tables of MATLAB functions and commands appear in Appendix C. A short
list of some of the more common ones follows. Use helpwin at the command
line to see a list of categories of functions, with links to descriptions of the
functions. Alternatively, go to the Contents listing in the Help Navigator (the
left pane in the Help browser), and expand successively MATLAB, Reference,
MATLAB Function Reference where you can choose either Functions by Cat-
egory, or Alphabetical List of Functions.

Note that if the argument of a function is an array, the function is applied
element by element to all the values in the array, e.g.,

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00010-5
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

99

https://doi.org/10.1016/B978-0-08-102997-8.00010-5

100 CHAPTER 4: MATLAB Functions

sqrt([1 2 3 4])

returns

1.0000 1.4142 1.7321 2.0000

Since this text is written in a tutorial style, it is expected that you will examine
the following list of some of the more common functions in MATLAB. It is
also, to some extent, expected that you already know, from your first courses in
mathematics and science, something about these functions. One way to ex-
amine these functions is to plot them. Have some fun experimenting with
MATLAB in your investigation of the following functions! For example, do the
following exercise for all functions of the assigned variable x, as illustrated
next.

x = -1:.1:1; <Enter>
plot(x,abs(x),’o’) <Enter>

You should get an illustration that looks like a V.

abs(x)
absolute value of x.

acos(x)
arc cosine (inverse cosine) of x between 0 and π .

acosh(x)
inverse hyperbolic cosine of x, i.e., ln(x + √

x2 − 1).
asin(x)

arc sine (inverse sine) of x between −π/2 and π/2.
asinh(x)

inverse hyperbolic sine of x, i.e., ln(x + √
x2 + 1).

atan(x)
arc tangent of x between −π/2 and π/2.

atan2(y, x)
arc tangent of y/x between −π and π .

atanh(x)

inverse hyperbolic tangent of x, i.e.,
1

2
ln

(
1 + x

1 − x

)
.

ceil(x)
smallest integer which exceeds x, i.e., rounds up to nearest integer, e.g.,
ceil(-3.9) returns -3, ceil(3.9) returns 4.

clock
time and date in a six-element vector, e.g., the statements

t = clock;
fprintf(’ %02.0f:%02.0f:%02.0f\n’, t(4), t(5), t(6));

4.1 Common functions 101

FIGURE 4.1
(a) Exponential, (b) hyperbolic sine and (c) hyperbolic cosine functions.

result in 14:09:03. Note how the hours, minutes and seconds are left-
filled with zeros if necessary.

cos(x)

cosine of x.
cosh(x)

hyperbolic cosine of x, i.e.,
ex + e−x

2
(see Fig. 4.1).

cot(x)

cotangent of x.
csc(x)

cosecant of x.
cumsum(x)

cumulative sum of the elements of x, e.g., cumsum(1:4) returns [1 3 6 10].
date

date in a string in dd-mmm-yyyy format, e.g., 02-Feb-2001.
exp(x)

value of the exponential function ex (see Fig. 4.1).
fix(x)

rounds to the nearest integer towards zero, e.g., fix(-3.9) returns -3,
fix(3.9) returns 3.

floor(x)

largest integer not exceeding x, i.e., rounds down to nearest integer, e.g.,
floor(-3.9) returns -4, floor(3.9) returns 3.

length(x)

number of elements of vector x.
log(x)

natural logarithm of x.

102 CHAPTER 4: MATLAB Functions

log10(x)
base 10 logarithm of x.

max(x)
maximum element of vector x.

mean(x)
mean value of elements of vector x.

min(x)
minimum element of vector x.

pow2(x)
2x .

prod(x)
product of the elements of x.

rand
pseudo-random number in the interval (0, 1). The value returned is
pseudo-random rather than truly random in the sense that there is an
algorithm that determines rand from the initial ‘seed’. The same seed will
generate the same ‘random’ sequence; see a later chapter for how to seed
rand by looking in the index.

realmax
largest positive floating point number on your computer.

realmin
smallest positive floating point number on your computer.

rem(x, y)
remainder when x is divided by y, e.g., rem(19, 5) returns 4 (5 goes 3
times into 19, remainder 4).
Strictly, rem(x, y) returns x - y * n where n = fix(x/y) is the integer
nearest to x/y. This shows how negative and/or non-integer arguments
are handled.
fix and rem are useful for converting smaller units to larger ones, e.g.,
inches to feet and inches (one foot = 12 inches). The following state-
ments convert 40 inches this way:

feet = fix(40/12)
inches = rem(40, 12)

Let us next examine an example that will hopefully inspire you to examine all
of the functions listed as well as any other function that you may discover
that MATLAB supports. Let us consider the arc-cosine, the arc-sine and the
arc-tangent functions, i.e., acos(x), asin(x) and atan(x), respectively. If you
specify x, i.e., the cosine, the sine and the tangent, respectively, between −1
and 1, what quadrant of the circle are the output angles selected? To provide
an answer, the following M-file script was created and executed. The graphical
comparison of the computed results is illustrated in Fig. 4.2. The REMARKS at the
end of the script provides an interpretation of the graphical results and, hence,
an answer to the question raised.

4.1 Common functions 103

%

% Script to compare the acos(x), asin(x), and atan(x)

% functions over the range -1 < x < 1. The values are

% converted to angles in degrees. The results are

% compared graphically.

%

% Script prepared by D. T. Valentine - September 2006.

% Comments modified by D.T.V. ... 2008/2012/2016/2018.

%

% The question raised is: What range of angles, i.e.,

% which of the four quadrents of the circle from 0 to

% 2*pi are the angular outputs of each of the functions?

%

% Assign the values of x to be examined:

%

x = -1:0.001:1;

%

% Compute the arc-functions:

%

y1 = acos(x);

y2 = asin(x);

y3 = atan(x);

%

% Convert the angles from radians to degrees:

%

y1 = 180*y1/pi;

y2 = 180*y2/pi;

y3 = 180*y3/pi;

%

% Plot the results:

%

plot(y1,x,y2,x,y3,x),grid

legend(’asin(x)’, ’acos(x)’, ’atan(x)’)

xlabel(’\theta in degrees’)

ylabel(’x, the argument of the function’)

%

% REMARKS: Note the following:

% (1) The acos(x) varies from 0 to 90 to 180 degrees.

% (2) The asin(x) varies from -90 to 0 to 90 degrees.

% (3) The atan(x) varies from -90 to 0 to 90 degrees.

% To check remark (3) try atan(10000000) *180/pi.

%

% Stop

104 CHAPTER 4: MATLAB Functions

FIGURE 4.2
Comparison of the results from the acos, asin and atan functions.

4.2 IMPORTING AND EXPORTING DATA

When you get into serious programming you will often need to store data on
a disk. The process of moving data between MATLAB and disk files is called
importing (from disk files) and exporting (to disk files). Data are saved in disk
files in one of two formats: text or binary. In text format, data values are ASCII
codes, and can be viewed in any text editor. In binary format, data values are
not ASCII codes and cannot be viewed in a text editor. Binary format is more
efficient in terms of storage space required. This chapter provides a brief sum-
mary of the main ways in which MATLAB imports and exports data. For full
details consult MATLAB Help: Development Environment: Importing and
Exporting Data.

4.2.1 The load and save commands

If you want to save data between MATLAB sessions the save and load com-
mands are probably the best ones to use.

4.2.2 Exporting text (ASCII) data

To export (save) the array

A =
1 2 3
4 5 6

in ‘delimited’ ASCII format in the file myData.txt use the command

save myData.txt A -ascii

4.2 Importing and exporting data 105

If you view myData.txt in a text editor (or type it in the Command Window)
it looks like this:

1.0000000e+000 2.0000000e+000 3.0000000e+000

4.0000000e+000 5.0000000e+000 6.0000000e+000

Delimiters are the characters used to separate the data values in the file—spaces
by default. You can use tabs instead of spaces by specifying the -tabs qualifier
instead of -ascii. If you save character arrays (strings) in this way, the ASCII
codes of the characters are written to the file.

4.2.3 Importing text (ASCII) data

The load command is the reverse of save, but has a curious twist. If the array A

has been saved in myData.txt as above the command

load myData.txt

creates a variable in the workspace with the same name as the file, minus the
extension, i.e., myData. If you don’t want the filename as the variable name use
the functional form of the command, e.g.,

A = load(’myData.txt’)

Data imported in this way doesn’t have to be created by MATLAB. You can
create it in a text editor, or it could be created by any other program that exports
data in ASCII format.

4.2.4 Exporting binary data

The command

save filename x y z

saves the variables x, y and z in the file filename.mat in MATLAB proprietary
binary format, i.e., such a MAT-file can only be used by MATLAB.

Note:

■ If no variables are listed the entire workspace is saved.
■ The extension .mat is the default—you can specify a different extension.
■ Seek help for all the save options.

106 CHAPTER 4: MATLAB Functions

4.2.5 Importing binary data

The command

load filename

loads all the variables from filename.mat into the workspace; see help for all
the load options.

SUMMARY

■ MATLAB functions may be used to perform a variety of mathematical,
trigonometric and other operations.

■ Data can be saved to disk files in text (ASCII) format or in binary format.
■ load and save can be used to import/export both text and binary data

(the latter in the form of MAT-files).

EXERCISES

4.1 Write some MATLAB statements which will:
(a) find the length C of the hypotenuse of a right-angle triangle in

terms of the lengths A and B of the other two sides;
(b) find the length C of a side of a triangle given the lengths A and

B of the other two sides and the size in degrees of the included
angle θ , using the cosine rule:

C2 = A2 + B2 − 2AB cos(θ).

4.2 Translate the following formulae into MATLAB expressions:
(a) ln(x + x2 + a2)

(b) [e3t + t2 sin(4t)] cos2(3t)

(c) 4 tan−1(1) (inverse tangent)
(d) sec2(x) + cot(y)

(e) cot−1(|x/a|) (use MATLAB’s inverse cotangent)
4.3 There are 39.37 inches in a meter, 12 inches in a foot, and three feet in

a yard. Write a script to input a length in meters (which may have a dec-
imal part) and convert it to yards, feet and inches. (Check: 3.51 meters
converts to 3 yds 2 ft 6.19 in.)

4.4 A sphere of mass m1 impinges obliquely on a stationary sphere of
mass m2, the direction of the blow making an angle α with the line
of motion of the impinging sphere. If the coefficient of restitution is e it
can be shown that the impinging sphere is deflected through an angle β

such that

tan(β) = m2(1 + e) tan(α)

m1 − em2 + (m1 + m2) tan2(α)

Exercises 107

Write a script to input values of m1, m2, e, and α (in degrees) and to
compute the angle β in degrees.

4.5 Section 2.7.3 has a program for computing the members of the se-
quence xn = an/n!. The program displays every member xn computed.
Adjust it to display only every 10th value of xn.
Hint: the expression rem(n, 10) will be zero only when n is an exact
multiple of 10. Use this in an if statement to display every tenth value
of xn.

4.6 To convert the variable mins minutes into hours and minutes you would
use fix(mins/60) to find the whole number of hours, and rem(mins,
60) to find the number of minutes left over. Write a script which inputs
a number of minutes and converts it to hours and minutes.
Now write a script to convert seconds into hours, minutes and seconds.
Try out your script on 10 000 seconds, which should convert to 2 hours,
46 minutes and 40 seconds.

4.7 Design an algorithm (i.e., write the structure plan) for a machine which
must give the correct amount of change from a $100 note for any pur-
chase costing less than $100. The plan must specify the number and
type of all notes and coins in the change, and should in all cases give
as few notes and coins as possible. (If you are not familiar with dollars
and cents, use your own monetary system.)

4.8 A uniform beam is freely hinged at its ends x = 0 and x = L, so that the
ends are at the same level. It carries a uniformly distributed load of W

per unit length, and there is a tension T along the x-axis. The deflection
y of the beam a distance x from one end is given by

y = WEI

T 2

[
cosh[a(L/2 − x)]

cosh(aL/2)
− 1

]
+ Wx(L − x)

2T
,

where a2 = T/EI , E being the Young’s modulus of the beam, and I is
the moment of inertia of a cross-section of the beam. The beam is 10 m
long, the tension is 1 000 N, the load 100 N/m, and EI is 104.
Write a script to compute and plot a graph of the deflection y against x

(MATLAB has a cosh function).
To make the graph look realistic you will have to override MATLAB’s
automatic axis scaling with the statement

axis([xmin xmax ymin ymax])

after the plot statement, where xmin etc. have appropriate values.

CHAPTER 5

Logical Vectors

CONTENTS

Examples 110
Discontinuous
graphs 110
Avoiding division by
zero..................... 111
Avoiding infinity 112
Counting random
numbers 113
Rolling dice........... 114

Logical
operators 115
Operator
precedence 116
Danger................. 116
Logical operators
and vectors 117

Subscripting
with logical
vectors............ 118
Logical
functions 119
Using any and all .. 120

Logical vectors
instead of elseif
ladders 121
Summary 123
Exercises 124
Supplementary
material 126

THE OBJECTIVES OF THIS CHAPTER ARE TO ENABLE YOU
TO:

■ Understand logical operators more fully

And to introduce you to:

■ Logical vectors and how to use them effectively in a number of applica-
tions

■ Logical functions

This chapter introduces a most powerful and elegant feature of MATLAB, viz.,
the logical vectors. The topic is so useful and, hence, important that it deserves
a chapter of its own.

Try these exercises on the command line:

1. Enter the following statements:

r = 1;
r <= 0.5 % no semi-colon

If you correctly left out the semi-colon after the second statement you
will have noticed that it returned the value 0.

2. Now enter the expression r >= 0.5 (again, no semi-colon). It should re-
turn the value 1. Note that we already saw in Chapter 2 that a logical
expression in MATLAB involving only scalars returns a value of 0 if it is
FALSE, and 1 if it is TRUE.

3. Enter the following statements:

r = 1:5;
r <= 3

Now the logical expression r <= 3 (where r is a vector) returns a vector:

1 1 1 0 0

Can you see how to interpret this result? For each element of r for which
r <= 3 is true, 1 is returned; otherwise 0 is returned. Now enter r == 4.
Can you see why 0 0 0 1 0 is returned?

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00011-7
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

109

https://doi.org/10.1016/B978-0-08-102997-8.00011-7

110 CHAPTER 5: Logical Vectors

FIGURE 5.1
A discontinuous graph using logical vectors.

When a vector is involved in a logical expression, the comparison is carried out
element by element (as in an arithmetic operation). If the comparison is true for
a particular element of the vector, the resulting vector, which is called a logical
vector, has a 1 in the corresponding position; otherwise it has a 0. The same
applies to logical expressions involving matrices.

You can also compare vectors with vectors in logical expressions. Enter the
following statements:

a = 1:5;
b = [0 2 3 5 6];
a == b % no semi-colon!

The logical expression a == b returns the logical vector

0 1 1 0 0

because it is evaluated element by element, i.e., a(1) is compared with b(1),
a(2) with b(2), etc.

5.1 EXAMPLES

5.1.1 Discontinuous graphs

One very useful application of logical vectors is in plotting discontinuities. The
following script plots the graph, shown in Fig. 5.1, defined by

y(x) =
{

sin(x) (sin(x) > 0)

0 (sin(x) ≤ 0)

5.1 Examples 111

over the range 0 to 3π :

x = 0 : pi/20 : 3 * pi;

y = sin(x);

y = y .* (y > 0); % set negative values of sin(x) to zero

plot(x, y)

The expression y > 0 returns a logical vector with 1’s where sin(x) is positive,
and 0’s otherwise. Element-by-element multiplication by y with .* then picks
out the positive elements of y.

5.1.2 Avoiding division by zero

Suppose you want to plot the graph of sin(x)/x over the range −4π to 4π . The
most convenient way to set up a vector of the x co-ordinates is

x = -4*pi : pi / 20 : 4*pi;

But then when you try

y = sin(x) ./ x;

you get for the value of y at x = 0 NaN. A neat way around this problem is to use
a logical vector to replace the zero with eps. This MATLAB function returns the
difference between 1.0 and the next largest number which can be represented
in MATLAB, i.e., approximately 2.2e-16. Here is how to do it:

x = x + (x == 0)*eps;

The expression x == 0 returns a logical vector with a single 1 for the element of
x which is zero, and so eps is added only to that element. The following script
plots the graph correctly—without a missing segment at x = 0 (see Fig. 5.2).

x = -4*pi : pi/20 : 4*pi;

x = x + (x == 0)*eps; % adjust x = 0 to x = eps

y = sin(x) ./ x;

plot(x, y)

When x has the value eps, the value of sin(eps)/eps has the correct limiting
value of 1 (check it), instead of NaN (Not-a-Number) resulting from a division
by zero.

112 CHAPTER 5: Logical Vectors

FIGURE 5.2
sin(x)/x.

FIGURE 5.3
Variations on tan(x): (A) Unrestricted vertical coordinate. (B) Restricted vertical coordinate.

5.1.3 Avoiding infinity

The following script attempts to plot tan(x) over the range −3π/2 to 3π/2. If
you are not too hot at trig graphs, perhaps you should sketch the graph roughly
with pen and paper before you run the script!

x = -3/2*pi : pi/100 : 3/2*pi;

y = tan(x);

plot(x, y)

The MATLAB plot—the left graph in Fig. 5.3—should look nothing like your
sketch. The problem is that tan(x) approaches ±∞ at odd multiples of π/2.
The scale on the MATLAB plot is therefore very large (about 1015), making it
impossible to see the structure of the graph anywhere else.

5.1 Examples 113

If you add the statement

y = y .* (abs(y) < 1e10); % remove the big ones

just before the plot statement you’ll get a much nicer graph, as shown in
Fig. 5.3B. The expression abs(y) < 1e10 returns a logical vector which is zero
only at the asymptotes. The graph thus goes through zero at these points,
which incidentally draws nearly vertical asymptotes for you. These ‘asymptotes’
become more vertical as the increment in x becomes smaller.

5.1.4 Counting random numbers

The function rand returns a (pseudo-)random number in the interval [0, 1);
rand(1, n) returns a row vector of n such numbers. Work out the following
problem on the command line:

1. Set up a vector r with seven random elements (leave out the semi-colon
so that you can see its elements):

r = rand(1,7) % no semi-colon

Check that the logical expression r < 0.5 gives the correct logical vector.
2. Using the function sum on the logical expression r < 0.5 will effectively

count how many elements of r are less than 0.5. Try it, and check your
answer against the values displayed for r:

sum(r < 0.5)

3. Now use a similar statement to count how many elements of r are greater
than or equal to 0.5 (the two answers should add up to 7, shouldn’t
they?).

4. Since rand generates uniformly distributed random numbers, you would
expect the number of random numbers which are less than 0.5 to get
closer and closer to half the total number as more and more are gener-
ated.
Generate a vector of a few thousand random numbers (suppress display
with a semi-colon this time) and use a logical vector to count how many
are less than 0.5.
Repeat a few times with a new set of random numbers each time. Because
the numbers are random, you should never get quite the same answer
each time.

Without logical vectors this problem is a little more involved. Here is the pro-
gram:

114 CHAPTER 5: Logical Vectors

tic % start

a = 0; % number >= 0.5

b = 0; % number < 0.5

for n = 1:5000

r = rand; % generate one number per loop

if r >= 0.5

a = a + 1;

else

b = b + 1;

end;

end;

t = toc; % finish

disp([’less than 0.5: ’ num2str(a)])

disp([’time: ’ num2str(t)])

It also takes a lot longer. Compare times for the two methods on your com-
puter.

5.1.5 Rolling dice

When a fair dice is rolled, the number uppermost is equally likely to be any
integer from 1 to 6. So if rand is a random number in the range [0, 1), 6 * rand

will be in the range [0, 6), and 6 * rand + 1 will be in the range [1, 7), i.e.,
between 1 and 6.9999. Discarding the decimal part of this expression with
floor gives an integer in the required range. Try the following exercises:

1. Generate a vector d of 20 random integers in the range 1 to 6:

d = floor(6 * rand(1, 20)) + 1

2. Count the number of ‘sixes’ thrown by summing the elements of the
logical vector d == 6.

3. Verify your result by displaying d.
4. Estimate the probability of throwing a six by dividing the number of sixes

thrown by 20. Using random numbers like this to mimic a real situation
based on chance is called simulation.

5. Repeat with more random numbers in the vector d. The more you have,
the closer the proportion of sixes gets to the theoretical expected value of
0.1667, i.e., 1/6.

6. Can you see why it would be incorrect to use round instead of floor? The
problem is that round rounds in both directions, whereas floor rounds
everything down.

5.2 Logical operators 115

Table 5.1 Logical operators.

Operator Meaning

~ NOT

& AND

| OR

Table 5.2 Truth table (T = true; F = false).

lex1 lex2 ~lex1 lex1 & lex2 lex1 | lex2 xor(lex1,
lex2)

F F T F F F

F T T F T T

T F F F T T

T T F T T F

5.2 LOGICAL OPERATORS

We saw briefly in Chapter 2 that logical expressions can be constructed not
only from the six relational operators, but also from the three logical opera-
tors shown in Table 5.1. Table 5.2 shows the effects of these operators on the
general logical expressions lex1 and lex2.

The OR operator (|) is technically an inclusive OR, because it is true when ei-
ther or both of its operands are true. MATLAB also has an exclusive OR function
xor(a, b) which is 1 (true) only when either but not both of a and b is 1 (Ta-
ble 5.2).

MATLAB also has a number of functions that perform bitwise logical opera-
tions. See Help on ops.

The precedence levels of the logical operators, among others, are shown in
Table 5.3. As usual, precedences may be overridden with brackets, e.g.,

~ 0 & 0

returns 0 (false), whereas

~ (0 & 0)

returns 1 (true). Some more examples:

(b * (b == 4) * a * c) & (a ~= 0)
(final >= 60) & (final < 70)
(a ~= 0) | (b ~= 0) | (c != 0)
~((a == 0) & (b == 0) & (c == 0))

116 CHAPTER 5: Logical Vectors

Table 5.3 Operator precedence (see Help on operator precedence).

Precedence Operators

1. ()

2. ^ .^ ’ .’ (pure transpose)

3. + (unary plus) - (unary minus) ~ (NOT)

4. * / \ .* ./ .\

5. + (addition) - (subtraction)

6. :

7. > < >= <= == ~=

8. & (AND)

9. | (OR)

It is never wrong to use brackets to make the logic clearer, even if they are syn-
tactically unnecessary. Incidentally, the last two expressions above are logically
equivalent, and are false only when a = b = c = 0. It makes you think, doesn’t
it?

5.2.1 Operator precedence

You may accidentally enter an expression like

2 > 1 & 0

(try it) and be surprised because MATLAB (a) accepts it, and (b) returns a value
of 0 (false). It is surprising because:

(a) 2 > 1 & 0 doesn’t appear to make sense. If you have got this far you
deserve to be let into a secret. MATLAB is based on the notorious lan-
guage C, which allows you to mix different types of operators in this
way (Pascal, for example, would never allow such flexibility!).

(b) We instinctively feel that & should have the higher precedence. 1 & 0
evaluates to 0, so 2 > 0 should evaluate to 1 instead of 0. The explana-
tion is due partly to the resolution of surprise (a). MATLAB groups its
operators in a rather curious and non-intuitive way. The complete op-
erator precedence is given in Table 5.3 (reproduced for ease of reference
in Appendix A). (Recall that the transpose operator ’ performs a com-
plex conjugate transpose on complex data; the dot-transpose operator
.’ performs a ‘pure’ transpose without taking the complex conjugate.)
Brackets always have the highest precedence.

5.2.2 Danger

I have seen quite a few students incorrectly convert the mathematical inequal-
ity 0 < r < 1, say, into the MATLAB expression

5.2 Logical operators 117

0 < r < 1

Once again, the first time I saw this I was surprised that MATLAB did not report
an error. Again, the answer is that MATLAB doesn’t really mind how you mix up
operators in an expression. It simply churns through the expression according
to its rules (which may not be what you expect).

Suppose r has the value 0.5. Mathematically, the inequality is true for this
value of r since it lies in the required range. However, the expression 0 < r < 1
is evaluated as 0. This is because the left hand operation (0 < 0.5) is first eval-
uated to 1 (true), followed by 1 < 1 which is false.

Inequalities like this should rather be coded as

(0 < r) & (r < 1)

The brackets are not strictly necessary (see Table 5.3) but they certainly help to
clarify the logic.

5.2.3 Logical operators and vectors

The logical operators can also operate on vectors (of the same size), returning
logical vectors, e.g.,

~(~[1 2 0 -4 0])

replaces all the non-zeros by 1’s, and leaves the 0’s untouched. Try it.

The script in Section 5.1 that avoids division by zero has the critical statement

x = x + (x == 0)*eps;

This is equivalent to

x = x + (~x)*eps;

Try it, and make sure you understand how it works.

Exercises
Work out the results of the following expressions before checking them at the com-
mand line:

a = [-1 0 3];

b = [0 3 1];

~a

a & b

118 CHAPTER 5: Logical Vectors

a | b

xor(a, b)

a > 0 & b > 0

a > 0 | b > 0

~ a > 0

a + (~ b)

a > ~ b

~ a > b

~ (a > b)

5.3 SUBSCRIPTING WITH LOGICAL VECTORS

We saw briefly in Chapter 2 that elements of a vector may be referenced with
subscripts, and that the subscripts themselves may be vectors, e.g.,

a = [-2 0 1 5 9];
a([5 1 3])

returns

9 -2 1

i.e., the fifth, first and third elements of a. In general, if x and v are vectors,
where v has n elements, then x(v) means

[x(v(1)), x(v(2)), ..., x(v(n))]

Now with a as defined above, see what

a(logical([0 1 0 1 0]))

returns. The function logical(v) returns a logical vector, with elements which
are 1 or 0 according as the elements of v are non-zero or 0.

A summary of the rules for the use of a logical vector as a subscript are as
follows:

■ A logical vector v may be a subscript of another vector x.
■ Only the elements of x corresponding to 1’s in v are returned.
■ x and v must be the same size.

Thus, the statement above returns

0 5

5.4 Logical functions 119

i.e., the second and fourth elements of a, corresponding to the 1’s in
logical([0 1 0 1 0]).

What will

a(logical([1 1 1 0 0]))

return? And what about a(logical([0 0 0 0 0]))?

Logical vector subscripts provide an elegant way of removing certain elements
from a vector, e.g.,

a = a(a > 0)

removes all the non-positive elements from a, because a > 0 returns the logical
vector [0 0 1 1 1]. We can verify incidentally that the expression a > 0 is a
logical vector, because the statement

islogical(a > 0)

returns 1. However, the numeric vector [0 0 1 1 1] is not a logical vector; the
statement

islogical([0 0 1 1 1])

returns 0.

5.4 LOGICAL FUNCTIONS

MATLAB has a number of useful logical functions that operate on scalars, vec-
tors and matrices. Examples are given in the following list (where x is a vector
unless otherwise stated). See Help on logical functions. (The functions are
defined slightly differently for matrix arguments—see Chapter 6 or Help.)

any(x) returns the scalar 1 (true) if any element of x is non-zero (true).
all(x) returns the scalar 1 if all the elements of x are non-zero.
exist(’a’) returns 1 if a is a workspace variable. For other possible return

values see help. Note that a must be enclosed in apostrophes.
find(x) returns a vector containing the subscripts of the non-zero (true) ele-

ments of x, so for example,

a = a(find(a))

removes all the zero elements from a! Try it. Another use of find is in
finding the subscripts of the largest (or smallest) elements in a vector,
when there is more than one. Enter the following:

120 CHAPTER 5: Logical Vectors

x = [8 1 -4 8 6];

find(x >= max(x))

This returns the vector [1 4], which are the subscripts of the largest
element (8). It works because the logical expression x >= max(x) returns
a logical vector with 1’s only at the positions of the largest elements.

isempty(x) returns 1 if x is an empty array and 0 otherwise. An empty array
has a size of 0-by-0.

isinf(x) returns 1’s for the elements of x which are +Inf or −Inf, and 0’s
otherwise.

isnan(x) returns 1’s where the elements of x are NaN and 0’s otherwise.
This function may be used to remove NaNs from a set of data. This situa-
tion could arise while you are collecting statistics; missing or unavailable
values can be temporarily represented by NaNs. However, if you do any
calculations involving the NaNs, they propagate through intermediate cal-
culations to the final result. To avoid this, the NaNs in a vector may be
removed with a statement like

x(isnan(x)) = []

MATLAB has a number of other logical functions starting with the characters
is. See is* in the Help index for the complete list.

5.4.1 Using any and all

Because any and all with vector arguments return scalars, they are particularly
useful in if statements. For example,

if all(a >= 1)

do something
end

means ‘if all the elements of the vector a are greater than or equal to 1, then do
something’.

Recall from Chapter 2 that a vector condition in an if statement is true only if
all its elements are non-zero. So if you want to execute statement below when
two vectors a and b are equal (i.e., the same) you could say

if a == b

statement
end

since if considers the logical vector returned by a == b true only if every ele-
ment is a 1.

5.5 Logical vectors instead of elseif ladders 121

If, on the other hand, you want to execute statement specifically when the vec-
tors a and b are not equal, the temptation is to say

if a ~= b % wrong wrong wrong!!!

statement
end

However this will not work, since statement will only execute if each of the cor-
responding elements of a and b differ. This is where any comes in:

if any(a ~= b) % right right right!!!

statement
end

This does what is required since any(a ~= b) returns the scalar 1 if any element
of a differs from the corresponding element of b.

5.5 LOGICAL VECTORS INSTEAD OF elseif LADDERS

Those of us who grew up on more conventional programming languages in
the last century may find it difficult to think in terms of using logical vectors
when solving general problems. It’s a nice challenge whenever writing a pro-
gram to ask yourself whether you can possibly use logical vectors. They are
almost always faster than other methods, although often not as clear to read
later. You must decide when it’s important for you to use logical vectors. But it’s
a very good programming exercise to force yourself to use them whenever pos-
sible! The following example illustrates these points by first solving a problem
conventionally, and then with logical vectors.

It has been said that there are two unpleasant and unavoidable facts of life:
death and income tax. A very simplified version of how income tax is calculated
could be based on the following table:

Taxable income Tax payable

$10 000 or less 10 per cent of taxable income

between $10 000 and $20 000 $1000 + 20 per cent of amount by which
taxable income exceeds $10 000

more than $20 000 $3000 + 50 per cent of amount by which
taxable income exceeds $20 000

The tax payable on a taxable income of $30 000, for example, is

$3000 + 50 per cent of ($30 000 − $20 000), i.e., $8000.

We would like to calculate the income tax on the following taxable incomes
(in dollars): 5000, 10 000, 15 000, 30 000 and 50 000.

122 CHAPTER 5: Logical Vectors

The conventional way to program this problem is to set up a vector with the
taxable incomes as elements and to use a loop with an elseif ladder to process
each element, as follows:

% Income tax the old-fashioned way

inc = [5000 10000 15000 30000 50000];

for ti = inc

if ti < 10000
tax = 0.1 * ti;

elseif ti < 20000
tax = 1000 + 0.2 * (ti - 10000);

else
tax = 3000 + 0.5 * (ti - 20000);

end;

disp([ti tax])
end;

Here is the output, suitably edited (note that the amount of tax paid changes
continuously between tax ‘brackets’—each category of tax is called a bracket):

Taxable income Income tax

5000.00 500.00
10000.00 1000.00
15000.00 2000.00
30000.00 8000.00
50000.00 18000.00

Now here is the logical way:

% Income tax the logical way

inc = [5000 10000 15000 30000 50000];

tax = 0.1 * inc .* (inc <= 10000);
tax = tax + (inc > 10000 & inc <= 20000) ...

.* (0.2 * (inc-10000) + 1000);
tax = tax + (inc > 20000) .* (0.5 * (inc-20000) + 3000);

disp([inc’ tax’]);

Summary 123

To understand how it works, it may help to enter the statements on the com-
mand line. Start by entering the vector inc as given. Now enter

inc <= 10000

which should give the logical vector [1 1 0 0 0]. Next enter

inc .* (inc <= 10000)

which should give the vector [5000 10000 0 0 0]. This has successfully
selected only the incomes in the first bracket. The tax for these incomes is then
calculated with

tax = 0.1 * inc .* (inc <= 10000)

which returns [500 1000 0 0 0].

Now for the second tax bracket. Enter the expression

inc > 10000 & inc <= 20000

which returns the logical vector [0 0 1 0 0], since there is only one in-
come in this bracket. Now enter

0.2 * (inc-10000) + 1000

This returns [0 1000 2000 5000 9000]. Only the third entry is correct.
Multiplying this vector by the logical vector just obtained blots out the other
entries, giving [0 0 2000 0 0]. The result can be safely added to the vector
tax since it will not affect the first two entries already there.

I am sure you will agree that the logical vector solution is more interesting than
the conventional one!

SUMMARY

■ When a relational and/or logical operator operates on a vector expres-
sion, the operation is carried out element by element. The result is a
logical vector consisting of 0’s (FALSE) and 1’s (TRUE).

■ A vector may be subscripted with a logical vector of the same size. Only
the elements corresponding to the 1’s in the logical vector are returned.

■ When one of the logical operators (~ & |) operates on an expression
any non-zero value in an operand is regarded as TRUE; zero is regarded
as FALSE. A logical vector is returned.

124 CHAPTER 5: Logical Vectors

■ Arithmetic, relational and logical operators may appear in the same ex-
pression. Great care must be taken in observing the correct operator
precedence in such situations.

■ Vectors in a logical expression must all be the same size.
■ If a logical expression is a vector or a matrix, it is considered true in an if

statement only if all its elements are non-zero.
■ The logical functions any and all return scalars when taking vector argu-

ments, and are consequently useful in if statements.
■ Logical vectors may often be used instead of the more conventional

elseif ladder. This provides faster more elegant code, but requires more
ingenuity and the code may be less clear to read later on.

EXERCISES

5.1 Determine the values of the following expressions yourself before
checking your answers using MATLAB. You may need to consult Ta-
ble 5.3.
(a) 1 & -1
(b) 13 & ~(-6)
(c) 0 < -2|0
(d) ~[1 0 2] * 3
(e) 0 <= 0.2 <= 0.4
(f) 5 > 4 > 3
(g) 2 > 3 & 1

5.2 Given that a = [1 0 2] and b = [0 2 2] determine the values of the
following expressions. Check your answers with MATLAB.
(a) a ~= b
(b) a < b
(c) a < b < a
(d) a < b < b
(e) a | (~a)
(f) b & (~b)
(g) a(~(~b))
(h) a = b == a (determine final value of a)

5.3 Write some MATLAB statements on the command line which use logical
vectors to count how many elements of a vector x are negative, zero or
positive. Check that they work, e.g., with the vector

[-4 0 5 -3 0 3 7 -1 6]

5.4 The Receiver of Revenue (Internal Revenue Service) decides to change
the tax table used in Section 5.5 slightly by introducing an extra tax
bracket and changing the tax-rate in the third bracket, as shown in the
table on the next page.

Exercises 125

Taxable income Tax payable

$10 000 or less 10 per cent of taxable income

between $10 000 and $20 000 $1000 + 20 per cent of amount by which
taxable income exceeds $10 000

between $20 000 and $40 000 $3000 + 30 per cent of amount by which
taxable income exceeds $20 000

more than $40 000 $9000 + 50 per cent of amount by which
taxable income exceeds $40 000

Amend the logical vector script to handle this table, and test it on
the following list of incomes (dollars): 5000, 10 000, 15 000, 22 000,
30 000, 38 000 and 50 000.

5.5 A certain company offers seven annual salary levels (dollars): 12 000,
15 000, 18 000, 24 000, 35 000, 50 000 and 70 000. The number of em-
ployees paid at each level are, respectively: 3000, 2500, 1500, 1000,
400, 100 and 25. Write some statements at the command line to find
the following:
(a) The average salary level. Use mean. (Answer: 32 000)
(b) The number of employees above and below this average salary

level. Use logical vectors to find which salary levels are above and
below the average level. Multiply these logical vectors element by
element with the employee vector, and sum the result. (Answer:
525 above, 8000 below)

(c) The average salary earned by an individual in the company (i.e.,
the total annual salary bill divided by the total number of em-
ployees). (Answer: 17 038.12).

5.6 Write some statements on the command line to remove the largest ele-
ment(s) from a vector. Try it out on x = [1 2 5 0 5]. The idea is to end
up with [1 2 0] in x. Use find and the empty vector [].

5.7 The electricity accounts of residents in a very small rural community are
calculated as follows:

■ if 500 units or less are used the cost is 2 cents per unit;
■ if more than 500, but not more than 1000 units are used, the cost

is $10 for the first 500 units, and then 5 cents for every unit in
excess of 500;

■ if more than 1000 units are used, the cost is $35 for the first 1000
units plus 10 cents for every unit in excess of 1000;

■ in addition, a basic service fee of $5 is charged, no matter how
much electricity is used.

The five residents use the following amounts (units) of electricity in a
certain month: 200, 500, 700, 1000 and 1500. Write a program which

126 CHAPTER 5: Logical Vectors

uses logical vectors to calculate how much they must pay. Display the
results in two columns: one for the electricity used in each case, and
one for amount owed. (Answers: $9, $15, $25, $40, $90)

APPENDIX 5.A SUPPLEMENTARY MATERIAL

Supplementary material related to this chapter can be found online at https://
doi.org/10.1016/B978-0-08-102997-8.00011-7.

https://doi.org/10.1016/B978-0-08-102997-8.00011-7
https://doi.org/10.1016/B978-0-08-102997-8.00011-7

CHAPTER 6

Matrices and Arrays

CONTENTS

Matrices.......... 127
A concrete example 127
Creating matrices .. 129
Subscripts 129
Transpose 130
The colon operator . 130
Duplicating rows
and columns: Tiling 133
Deleting rows and
columns 134
Elementary
matrices 135
Specialized
matrices 136
Using MATLAB
functions with
matrices 137
Manipulating
matrices 138
Array (element-by-
element) operations
on matrices 138
Matrices and for ... 139
Visualization of
matrices 139
Vectorizing
nested fors: loan
repayment tables ... 139
Multi-dimensional
arrays 142

Matrix
operations 143
Matrix
multiplication........ 143
Matrix
exponentiation....... 145

Other matrix
functions 145

THE OBJECTIVES OF THIS CHAPTER ARE TO:

■ Introduce you to ways of creating and manipulating matrices.
■ Introduce you to matrix operations.
■ Introduce you to character strings and facilities for handling them.
■ Demonstrate some uses of matrices by examples in:

– Population dynamics.
– Markov processes.
– Linear equations.

■ Introduce MATLAB’s sparse matrix facilities.

As we have already seen, the name MATLAB stands for MATrix LABoratory,
because the MATLAB system is designed specially to work with data arranged in
the form of matrices (2-D arrays). The word ‘matrix’ has two distinct meanings
in this chapter:

1. An arrangement of data in rows and columns, e.g., a table.
2. A mathematical object, for which particular mathematical operations are

defined, e.g., ‘matrix’ multiplication.

We begin this chapter (in Sections 6.1, 6.2, and 6.3) by looking at matrices
in the first sense, summarizing and extending what we learned about them in
Chapter 2. We then go on to look briefly at the mathematical operations on
matrices. In a later chapter we will see how these operations can be applied
in a number of widely differing areas, such as systems of linear equations,
population dynamics, and Markov processes.

6.1 MATRICES

6.1.1 A concrete example

A ready-mix concrete company has three factories (S1, S2 and S3) which must
supply three building sites (D1, D2 and D3). The costs, in some suitable cur-

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00012-9
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

127

https://doi.org/10.1016/B978-0-08-102997-8.00012-9

128 CHAPTER 6: Matrices and Arrays

Population
growth: Leslie
matrices 146
Markov
processes 149
A random walk 150

Linear equations 152
MATLAB’s solution . 153
The residual.......... 153
Over-determined
systems 154
Under-determined
systems 155
Ill conditioning 155
Matrix division 156

Sparse matrices 157

Summary 160
Exercises 160

rency, of transporting a load of concrete from any factory to any site are given
by the following cost table:

D1 D2 D3

S1 3 12 10

S2 17 18 35

S3 7 10 24

The factories can supply 4, 12 and 8 loads per day, respectively, and the sites
require 10, 9 and 5 loads per day, respectively. The real problem is to find the
cheapest way to satisfy the demands at the sites, but we are not considering
that here.

Suppose the factory manager proposes the following transportation scheme
(each entry represents the number of loads of concrete to be transported along
that particular route):

D1 D2 D3

S1 4 0 0

S2 6 6 0

S3 0 3 5

This sort of scheme is called a solution to the transportation problem. The cost
table (and the solution) can then be represented by tables C and X, say, where
cij is the entry in row i and column j of the cost table, with a similar conven-
tion for X.

To compute the cost of the above solution, each entry in the solution ta-
ble must be multiplied by the corresponding entry in the cost table. (This
operation is not to be confused with the mathematical operation of matrix
multiplication, which is discussed later.) We therefore want to calculate

3 × 4 + 12 × 0 + · · · + 24 × 5.

To do this calculation in MATLAB, enter C and X as matrices from the com-
mand line, with a semi-colon at the end of each row:

c = [3 12 10; 17 18 35; 7 10 24];
x = [4 0 0; 6 6 0; 0 3 5];

and then find the array product of c and x:

total = c .* x

which gives

6.1 Matrices 129

12 0 0
102 108 0
0 30 120

The command

sum(total)

then returns a vector where each element is the sum of each column of total:

114 138 120

Summing this in turn, i.e., sum(sum(total)), gives the final answer of 372.

6.1.2 Creating matrices

As we saw above, use a semi-colon to indicate the end of a row when enter-
ing a matrix. Bigger matrices can be constructed from smaller ones, e.g., the
statements

a = [1 2; 3 4];
x = [5 6];
a = [a; x]

result in

a =
1 2
3 4
5 6

Instead of a semi-colon, you can use a line-feed (Enter) to indicate the end of
a row.

6.1.3 Subscripts

Individual elements of a matrix are referenced with two subscripts, the first for
the row, and the second for the column, e.g., a(3,2) for a above returns 6.

Alternatively, and less commonly, a single subscript may be used. In this case
you can think of the matrix as being ‘unwound’ column by column. So a(5)
for the above example returns 4.

If you refer to a subscript which is out of range, e.g., a(3,3) for a above, you
will get an error message. However, if you assign a value to an element with a
subscript which is out of range the matrix is enlarged to accommodate the new
element, for example, the assignment

130 CHAPTER 6: Matrices and Arrays

a(3,3) = 7

will add a third column to a with 0’s everywhere except at a(3,3).

6.1.4 Transpose

The statements

a = [1:3; 4:6]
b = a’

result in

a =
1 2 3
4 5 6

b =
1 4
2 5
3 6

The transpose operator ’ (apostrophe) turns rows into columns and vice versa.

6.1.5 The colon operator

■ The colon operator is extremely powerful, and provides for very efficient
ways of handling matrices, e.g., if a is the matrix

a =
1 2 3
4 5 6
7 8 9

the statement

a(2:3,1:2)

results in

4 5
7 8

(returns second and third rows, first and second columns), the statement

a(3,:)

results in

6.1 Matrices 131

7 8 9

(returns third row), and the statement

a(1:2,2:3) = ones(2)

results in

a =
1 1 1
4 1 1
7 8 9

(replaces the 2-by-2 submatrix composed of the first and second row and
the second and third column with a square matrix of 1’s).
Essentially, what is happening in the above examples is that the colon
operator is being used to create vector subscripts. However, a colon by
itself in place of a subscript denotes all the elements of the corresponding
row or column. So a(3,:) means all elements in the third row.
This feature may be used, for example, to construct tables. Suppose we
want a table trig of the sines and cosines of the angles 0◦ to 180◦ in
steps of 30◦. The following statements achieve this:

x = [0:30:180]’;
trig(:,1) = x;
trig(:,2) = sin(pi/180*x);
trig(:,3) = cos(pi/180*x);

■ You can use vector subscripts to get more complicated effects, e.g., for

b = ones(3,4)

try

a(:,[1 3]) = b(:,[4 2])

This operation replaces the first and third columns of a by the fourth and
second columns of b (a and b must have the same number of rows).

■ The colon operator is ideal for the sort of row operations performed in
Gauss reduction (a technique of numerical mathematics), for example, if
a is the matrix

a =
1 -1 2
2 1 -1
3 0 1

the statement

a(2,:) = a(2,:) - a(2,1)*a(1,:)

132 CHAPTER 6: Matrices and Arrays

subtracts the first row multiplied by the first element in the second row
from the second row, resulting in

a =
1 -1 2
0 3 -5
3 0 1

(the idea being to get a zero immediately underneath a(1,1)).
■ The keyword end refers to the last row or column of an array, for example,

if r is a row vector, the statement

sum(r(3:end))

returns the sum of all the elements of r from the third one to the last one.
■ The colon operator may also be used as a single subscript, in which case

it behaves differently if it is on the right-hand or left-hand side of an
assignment. On the right-hand side of an assignment, a(:) gives all the
elements of a strung out by columns in one long column vector, e.g., if

a =
1 2
3 4

the statement

b = a(:)

results in

b =
1
3
2
4

However, on the left-hand side of an assignment, a(:) reshapes a matrix.
a must already exist. Then a(:) denotes a matrix with the same dimen-
sions (shape) as a, but with new contents taken from the right-hand side.
In other words, the matrix on the right-hand side is reshaped into the
shape of a on the left-hand side. Some examples may help. If

b =
1 2 3
4 5 6

and

a =
0 0
0 0
0 0

6.1 Matrices 133

the statement

a(:) = b

results in

a =
1 5
4 3
2 6

(the contents of b are strung out into one long column and then fed into
a by columns). As another example, the statement

a(:) = 1:6

(with a as above) results in

a =
1 4
2 5
3 6

Reshaping can also be done with the reshape function. See help.
Whether the colon operator appears on the right- or left-hand side of an
assignment, the matrices or submatrices on each side of the assignment
have the same shape (except in the special case below).

■ As a special case, a single colon subscript may be used to replace all the
elements of a matrix with a scalar, e.g.,

a(:) = -1

6.1.6 Duplicating rows and columns: Tiling

Sometimes it is useful to generate a matrix where all the rows or columns are
the same. This can be done with the repmat function as follows. If a is the row
vector

a =
1 2 3

the statement

repmat(a, [3 1])

results in

134 CHAPTER 6: Matrices and Arrays

ans =
1 2 3
1 2 3
1 2 3

In help’s inimitable phraseology, this statement produces a 3-by-1 ‘tiling’ of
copies of a. You can think of a as a ‘strip’ of three tiles stuck to self-adhesive
backing. The above statement tiles a floor with three rows and one column of
such a strip of tiles.

There is an alternative syntax for repmat:

repmat(a, 3, 1)

An interesting example of this process appears at the end of this section in the
loan repayment problem.

6.1.7 Deleting rows and columns

Use the colon operator and the empty array to delete entire rows or columns,
for example,

a(:,2) = []

deletes the second column of a.

You can’t delete a single element from a matrix while keeping it a matrix, so a
statement like

a(1,2) = []

results in an error. However, using the single subscript notation you can delete
a sequence of elements from a matrix and reshape the remaining elements into
a row vector, for example, if

a =
1 2 3
4 5 6
7 8 9

the statement

a(2:2:6) = []

results in

6.1 Matrices 135

a =
1 7 5 3 6 9

Get it? (First unwind a by columns, then remove elements 2, 4 and 6.)

You can use logical vectors to extract a selection of rows or columns from a ma-
trix, for example, if a is the original 3-by-3 matrix defined above, the statement

a(:, logical([1 0 1]))

results in

ans =
1 3
4 6
7 9

(first and third columns extracted). The same effect is achieved with

a(:, [1 3])

6.1.8 Elementary matrices

There is a group of functions to generate ‘elementary’ matrices which are used
in a number of applications. See help elmat.

For example, the functions zeros, ones and rand generate matrices of 1’s, 0’s
and random numbers, respectively. With a single argument n, they generate
n × n (square) matrices. With two arguments n and m they generate n × m

matrices. (For very large matrices repmat is usually faster than ones and zeros.)

The function eye(n) generates an n×n identity matrix, i.e., a matrix with 1’s on
the main ‘diagonal’, and 0’s everywhere else, e.g., the statement

eye(3)

results in

ans =
1 0 0
0 1 0
0 0 1

(The original version of MATLAB could not use the more obvious name I for
the identity since it did not distinguish between upper- and lowercase letters
and i was the natural choice for the imaginary unit number.)

136 CHAPTER 6: Matrices and Arrays

As an example, eye may be used to construct a tridiagonal matrix as follows.
The statements

a = 2 * eye(5);
a(1:4, 2:5) = a(1:4, 2:5) - eye(4);
a(2:5, 1:4) = a(2:5, 1:4) - eye(4)

result in

a =
2 -1 0 0 0

-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2

Incidentally, if you work with large tridiagonal matrices, you should have a
look at the sparse matrix facilities available in MATLAB via the help browser.

6.1.9 Specialized matrices

The following are functions that could be used to generate arbitrary matrices
to investigate matrix operations when you cannot think of one to generate
yourself. They are special matrices that were discovered by mathematicians,
the motivation for their discovery and other details about them you are not
expected to understand.

pascal(n) generates a Pascal matrix of order n. Technically, this is a symmetric
positive definite matrix with entries made up from Pascal’s triangle, e.g.,

pascal(4)

results in

ans =
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

magic(n) generates an n × n magic square.

MATLAB has a number of other functions which generate special matrices, such
as gallery, hadamard, hankel, hilb, toeplitz, vander, etc. See help elmat.

6.1 Matrices 137

6.1.10 Using MATLAB functions with matrices

When a MATLAB mathematical or trigonometric function has a matrix argu-
ment, the function operates on every element of the matrix, as you would
expect. However, many of the other MATLAB functions operate on matrices
column by column, e.g., if

a =
1 0 1
1 1 1
0 0 1

the statement

all(a)

results in

ans =
0 0 1

For each column of a where all the elements are true (non-zero) all returns 1,
otherwise it returns 0. all therefore returns a logical vector when it takes a
matrix argument. To test if all the elements of a are true, use all twice. In this
example, the statement

all(all(a))

returns 0 because some of the elements of a are 0. On the other hand the
statement

any(a)

returns

ans =
1 1 1

because each column of a has at least one non-zero element, and any(any(a))
returns 1, since a itself has at least one non-zero element.

If you are not sure whether a particular function operates columnwise or ele-
ment by element on matrices, you can always request help.

138 CHAPTER 6: Matrices and Arrays

6.1.11 Manipulating matrices

Here are some functions for manipulating matrices. See help for details.

diag extracts or creates a diagonal.

fliplr flips from left to right.

flipud flips from top to bottom.

rot90 rotates.

tril extracts the lower triangular part, e.g., the statement

tril(pascal(4))

results in

ans =
1 0 0 0
1 2 0 0
1 3 6 0
1 4 10 20

triu extracts the upper triangular part.

6.1.12 Array (element-by-element) operations on matrices

The array operations discussed in Chapter 2 all apply to matrices as well as
vectors. For example, if a is a matrix, a * 2 multiplies each element of a by 2,
and if

a =
1 2 3
4 5 6

the statement

a .^ 2

results in

ans =
1 4 9

16 25 36

6.1 Matrices 139

6.1.13 Matrices and for

If

a =
1 2 3
4 5 6
7 8 9

the statements

for v = a
disp(v’)

end

result in

1 4 7
2 5 8
3 6 9

What happens in this most general form of the for statement is that the index
v takes on the value of each column of the matrix expression a in turn. This
provides a neat way of processing all the columns of a matrix. You can do the
same with the rows if you transpose a, e.g., the statements

for v = a’
disp(v’)

end

display the rows of a one at a time. Get it?

6.1.14 Visualization of matrices

Matrices can be visualized graphically in MATLAB. This subject is discussed
briefly in Chapter 9, with illustrations.

6.1.15 Vectorizing nested fors: loan repayment tables

If a regular fixed payment P is made n times a year to repay a loan of amount
A over a period of k years, where the nominal annual interest rate is r , P is
given by

P = rA(1 + r/n)nk

n[(1 + r/n)nk − 1] .

140 CHAPTER 6: Matrices and Arrays

We would like to generate a table of repayments for a loan of $1 000 over 15,
20 or 25 years, at interest rates that vary from 10% to 20% per annum, in
steps of 1%. Since P is directly proportional to A in the above formula, the
repayments of a loan of any amount can be found by simple proportion from
such a table.

The conventional way of handling this is with ‘nested’ fors. The fprintf state-
ments are necessary in order to get the output for each interest rate on the same
line (see MATLAB Help):

A = 1000; % amount borrowed
n = 12; % number of payments per year

for r = 0.1 : 0.01 : 0.2
fprintf(’%4.0f%’, 100 * r);
for k = 15 : 5 : 25
temp = (1 + r/n) ^ (n*k);
P = r * A * temp / (n * (temp - 1));
fprintf(’%10.2f’, P);

end;
fprintf(’\n’); % new line

end;

Some sample output (with headings edited in):

rate % 15 yrs 20 yrs 25 yrs

10 10.75 9.65 9.09
11 11.37 10.32 9.80
...
19 16.83 16.21 15.98
20 17.56 16.99 16.78

However, we saw in Chapter 2 that for loops can often be vectorized, saving
a lot of computing time (and also providing an interesting intellectual chal-
lenge!). The inner loop can easily be vectorized; the following code uses only
one for:

...
for r = 0.1 : 0.01 : 0.2

k = 15 : 5 : 25;
temp = (1 + r/n) .^ (n*k);
P = r * A * temp / n ./ (temp - 1);
disp([100 * r, P]);

end;

6.1 Matrices 141

Note the use of the array operators.

The really tough challenge, however, is to vectorize the outer loop as well. We
want a table with 11 rows and 3 columns. Start by assigning values to A and n
(from the command line):

A = 1000;
n = 12;

Then generate a column vector for the interest rates:

r = [0.1:0.01:0.2]’

Now change this into a table with 3 columns each equal to r:

r = repmat(r, [1 3])

The matrix r should look like this:

0.10 0.10 0.10
0.11 0.11 0.11
...
0.19 0.19 0.19
0.20 0.20 0.20

Now do a similar thing for the repayment periods k. Generate the row vector

k = 15:5:25

and expand it into a table with 11 rows each equal to k:

k = repmat(k, [11 1])

This should give you

15 20 25
15 20 25
...
15 20 25
15 20 25

The formula for P is a little complicated, so let’s do it in two steps:

142 CHAPTER 6: Matrices and Arrays

temp = (1 + r/n) .^ (n * k);
P = r * A .* temp / n ./ (temp - 1)

Finally, you should get this for P:

10.75 9.65 9.09
11.37 10.32 9.80
...
16.83 16.21 15.98
17.56 16.99 16.78

This works, because of the way the tables r and k have been constructed, and
because the MATLAB array operations are performed element by element. For
example, when the calculation is made for P in row 2 and column 1, the array
operations pick out row 2 of r (all 0.11) and column 1 of k (all 15), giving the
correct value for P (11.37).

The nested for way might be easier to program, but this way is certainly more
interesting (and quicker to execute).

6.1.16 Multi-dimensional arrays

MATLAB arrays can have more than two dimensions. For example, suppose you
create the matrix

a = [1:2; 3:4]

You can add a third dimension to a with

a(:,:,2) = [5:6; 7:8]

MATLAB responds with

a(:,:,1) =
1 2
3 4

a(:,:,2) =
5 6
7 8

It helps to think of the 3-D array a as a series of ‘pages’, with a matrix on
each page. The third dimension of a numbers the pages. This is analogous to a
spreadsheet with multiple sheets: each sheet contains a table (matrix).

You can get into hyperpages with higher dimensions if you like!

See help datatypes for a list of special multi-dimensional array functions.

6.2 Matrix operations 143

6.2 MATRIX OPERATIONS

We have seen that array operations are performed element by element on ma-
trices. However, matrix operations, which are fundamental to MATLAB, are
defined differently in certain cases, in the mathematical sense.

Matrix addition and subtraction are defined in the same way as the equivalent
array operations, i.e., element by element. Matrix multiplication, however, is
quite different.

6.2.1 Matrix multiplication

Matrix multiplication is probably the most important matrix operation. It is
used widely in such areas as network theory, solution of linear systems of
equations, transformation of co-ordinate systems, and population modeling,
to name but a very few. The rules for multiplying matrices look a little weird
if you’ve never seen them before, but will be justified by the applications that
follow.

When two matrices A and B are multiplied together in this sense, their product
is a third matrix C. The operation is written as

C = AB,

and the general element cij of C is formed by taking the scalar product of the
ith row of A with the j th column of B. (The scalar product of two vectors x and
y is x1y1 + x2y2 + . . ., where xi and yi are the components of the vectors.) It
follows that A and B can only be successfully multiplied (in that order) if the
number of columns in A is the same as the number of rows in B.

The general definition of matrix multiplication is as follows: If A is a n × m

matrix and B is a m×p matrix, their product C will be a n×p matrix such that
the general element cij of C is given by

cij =
m∑

k=1

aik bkj .

Note that in general AB is not equal to BA (matrix multiplication is not com-
mutative).

Example:
[

1 2
3 4

]
×

[
5 6
0 −1

]
=

[
5 4

15 14

]

Since a vector is simply a one-dimensional matrix, the definition of matrix
multiplication given above also applies when a vector is multiplied by an ap-

144 CHAPTER 6: Matrices and Arrays

propriate matrix, e.g.,
[

1 2
3 4

]
×

[
2
3

]
=

[
8

18

]
.

The operator * is used for matrix multiplication, as you may have guessed. For
example, if

a =
1 2
3 4

and

b =
5 6
0 -1

the statement

c = a * b

results in

c =
5 4

15 14

Note the important difference between the array operation a .* b (evaluate by
hand and check with MATLAB) and the matrix operation a * b.

To multiply a matrix by a vector in that order, the vector must be a column
vector. So if

b = [2 3]’

the statement

c = a * b

results in

c =
8

18

6.3 Other matrix functions 145

6.2.2 Matrix exponentiation

The matrix operation A2 means A × A, where A must be a square matrix. The
operator ^ is used for matrix exponentiation, e.g., if

a =

1 2

3 4

the statement

a ^ 2

results in

ans =

7 10

15 22

which is the same as a * a (try it).

Again, note the difference between the array operation a .^ 2 (evaluate by
hand and check with MATLAB) and the matrix operation a ^ 2.

6.3 OTHER MATRIX FUNCTIONS

Here are some of MATLAB’s more advanced matrix functions.

det determinant.

eig eigenvalue decomposition.

expm matrix exponential, i.e., eA, where A is a matrix. The matrix exponen-
tial may be used to evaluate analytical solutions of linear ordinary differential
equations with constant coefficients.

inv inverse.

lu LU factorization (into lower and upper triangular matrices).

qr orthogonal factorization.

svd singular value decomposition.

146 CHAPTER 6: Matrices and Arrays

6.4 POPULATION GROWTH: LESLIE MATRICES

Our first application of matrices is in population dynamics.

Suppose we want to model the growth of a population of rabbits, in the sense
that given their number at some moment, we would like to estimate the size of
the population in a few years’ time. One approach is to divide the rabbit pop-
ulation up into a number of age classes, where the members of each age class
are one time unit older than the members of the previous class, the time unit
being whatever is convenient for the population being studied (days, months,
etc.).

If Xi is the size of the ith age class, we define a survival factor Pi as the propor-
tion of the ith class that survive to the (i + 1)th age class, i.e. the proportion
that ‘graduate’. Fi is defined as the mean fertility of the ith class. This is the mean
number of newborn individuals expected to be produced during one time in-
terval by each member of the ith class at the beginning of the interval (only
females count in biological modeling, since there are always enough males to
go round!).

Suppose for our modified rabbit model we have three age classes, with X1,
X2 and X3 members, respectively. We will call them young, middle-aged and
old-aged for convenience. We will take our time unit as one month, so X1
is the number that were born during the current month, and which will be
considered as youngsters at the end of the month. X2 is the number of middle-
aged rabbits at the end of the month, and X3 the number of oldsters. Suppose
the youngsters cannot reproduce, so that F1 = 0. Suppose the fertility rate for
middle-aged rabbits is 9, so F2 = 9, while for oldsters F3 = 12. The probability
of survival from youth to middle-age is one third, so P1 = 1/3, while no less
than half the middle-aged rabbits live to become oldsters, so P2 = 0.5 (we are
assuming for the sake of illustration that all old-aged rabbits die at the end of
the month—this can be corrected easily). With this information we can quite
easily compute the changing population structure month by month, as long as
we have the population breakdown to start with.

If we now denote the current month by t , and next month by (t + 1), we can
refer to this month’s youngsters as X1(t), and to next month’s as X1(t +1), with
similar notation for the other two age classes. We can then write a scheme for
updating the population from month t to month (t + 1) as follows:

X1(t + 1) = F2X2(t) + F3X3(t),

X2(t + 1) = P1X1(t),

X3(t + 1) = P2X2(t).

We now define a population vector X(t), with three components, X1(t), X2(t),
and X3(t), representing the three age classes of the rabbit population in

6.4 Population growth: Leslie matrices 147

month t . The above three equations can then be rewritten as
⎡
⎣ X1

X2

X3

⎤
⎦

(t+1)

=
⎡
⎣ 0 F2 F3

P1 0 0
0 P2 0

⎤
⎦ ×

⎡
⎣ X1

X2

X3

⎤
⎦

t

where the subscript at the bottom of the vectors indicates the month. We can
write this even more concisely as the matrix equation

X(t + 1) = L X(t), (6.1)

where L is the matrix⎡
⎣ 0 9 12

1/3 0 0
0 1/2 0

⎤
⎦

in this particular case. L is called a Leslie matrix. A population model can always
be written in the form of Equation (6.1) if the concepts of age classes, fertility,
and survival factors, as outlined above, are used.

Now that we have established a matrix representation for our model, we can
easily write a script using matrix multiplication and repeated application of
Equation (6.1):

X(t + 2) = L X(t + 1),

X(t + 3) = L X(t + 2), etc.

We will assume to start with that we have one old (female) rabbit, and no
others, so X1 = X2 = 0, and X3 = 1. Here is the script:

% Leslie matrix population model
n = 3;
L = zeros(n); % all elements set to zero
L(1,2) = 9;
L(1,3) = 12;
L(2,1) = 1/3;
L(3,2) = 0.5;
x = [0 0 1]’; % remember x must be a column vector!

for t = 1:24
x = L * x;
disp([t x’ sum(x)]) % x’ is a row

end

The output, over a period of 24 months (after some editing), is:

148 CHAPTER 6: Matrices and Arrays

FIGURE 6.1
Total rabbit population over 15 months

Month Young Middle Old Total

1 12 0 0 12

2 0 4 0 4

3 36 0 2 38

4 24 12 0 36

5 108 8 6 122

...

22 11184720 1864164 466020 13514904

23 22369716 3728240 932082 27030038

24 44739144 7456572 1864120 54059836

It so happens that there are no ‘fractional’ rabbits in this example. If there are
any, they should be kept, and not rounded (and certainly not truncated). They
occur because the fertility rates and survival probabilities are averages.

If you look carefully at the output you may spot that after some months the
total population doubles every month. This factor is called the growth factor,
and is a property of the particular Leslie matrix being used (for those who
know about such things, it’s the dominant eigenvalue of the matrix). The growth
factor is 2 in this example, but if the values in the Leslie matrix are changed,
the long-term growth factor changes too (try it and see).

Fig. 6.1 shows how the total rabbit population grows over the first 15 months.
To draw this graph yourself, insert the line

p(t) = sum(x);

6.5 Markov processes 149

in the for loop after the statement x = L * x;, and run the program again. The
vector p will contain the total population at the end of each month. Then enter
the commands

plot(1:15, p(1:15)), xlabel(’months’), ylabel(’rabbits’)

hold, plot(1:15, p(1:15),’o’)

The graph demonstrates exponential growth. If you plot the population over the
full 24-month period, you will see that the graph gets much steeper. This is a
feature of exponential growth.

You probably didn’t spot that the numbers in the three age classes tend to
a limiting ratio of 24:4:1. This can be demonstrated very clearly if you run
the model with an initial population structure having this limiting ratio. The
limiting ratio is called the stable age distribution of the population, and again
it is a property of the Leslie matrix (in fact, it is the eigenvector belonging to
the dominant eigenvalue of the matrix). Different population matrices lead to
different stable age distributions.

The interesting point about this is that a given Leslie matrix always eventually
gets a population into the same stable age distribution, which increases eventu-
ally by the same growth factor each month, no matter what the initial population
breakdown is. For example, if you run the above model with any other initial
population, it will always eventually get into a stable age distribution of 24:4:1
with a growth factor of 2 (try it and see).

See help eig if you’re interested in using MATLAB to compute eigenvalues and
eigenvectors.

6.5 MARKOV PROCESSES

Often a process that we wish to model may be represented by a number of
possible discrete (i.e. discontinuous) states that describe the outcome of the
process. For example, if we are spinning a coin, then the outcome is adequately
represented by the two states ‘heads’ and ‘tails’ (and nothing in between). If the
process is random, as it is with spinning coins, there is a certain probability
of being in any of the states at a given moment, and also a probability of
changing from one state to another. If the probability of moving from one
state to another depends on the present state only, and not on any previous
state, the process is called a Markov chain. The progress of the myopic sailor in
Chapter 13 is an example of such a process. Markov chains are used widely in
such diverse fields as biology and business decision making, to name just two
areas.

150 CHAPTER 6: Matrices and Arrays

6.5.1 A random walk

This example is a variation on the random walk simulation of Chapter 13.
A street has six intersections. A short-sighted student wanders down the street.
His home is at intersection 1, and his favorite internet cafe at intersection 6. At
each intersection other than his home or the cafe he moves in the direction of
the cafe with probability 2/3, and in the direction of his home with probability
1/3. In other words, he is twice as likely to move towards the cafe as towards
his home. He never wanders down a side street. If he reaches his home or the
cafe, he disappears into them, never to re-appear (when he disappears we say
in Markov jargon that he has been absorbed).

We would like to know: what are the chances of him ending up at home or in
the cafe, if he starts at a given corner (other than home or the cafe, obviously)?
He can clearly be in one of six states, with respect to his random walk, which
can be labeled by the intersection number, where state 1 means Home and
state 6 means Cafe. We can represent the probabilities of being in these states
by a six-component state vector X(t), where Xi(t) is the probability of him being
at intersection i at moment t . The components of X(t) must sum to 1, since he
has to be in one of these states.

We can express this Markov process with the following transition probability ma-
trix, P, where the rows represent the next state (i.e. corner), and the columns
represent the present state:

Home 2 3 4 5 Cafe

Home 1 1/3 0 0 0 0

2 0 0 1/3 0 0 0

3 0 2/3 0 1/3 0 0

4 0 0 2/3 0 1/3 0

5 0 0 0 2/3 0 0

Cafe 0 0 0 0 2/3 1

The entries for Home-Home and Cafe-Cafe are both 1 because he stays there
with certainty.

Using the probability matrix P we can work out his chances of being, say, at
intersection 3 at moment (t + 1) as

X3(t + 1) = 2/3X2(t) + 1/3X4(t).

To get to 3, he must have been at either 2 or 4, and his chances of moving from
there are 2/3 and 1/3, respectively.

Mathematically, this is identical to the Leslie matrix problem. We can therefore
form the new state vector from the old one each time with a matrix equation:

X(t + 1) = P X(t).

6.5 Markov processes 151

If we suppose the student starts at intersection 2, the initial probabilities will
be (0; 1; 0; 0; 0; 0). The Leslie matrix script may be adapted with very few
changes to generate future states:

n = 6;
P = zeros(n); % all elements set to zero

for i = 3:6
P(i,i-1) = 2/3;
P(i-2,i-1) = 1/3;

end

P(1,1) = 1;
P(6,6) = 1;
x = [0 1 0 0 0 0]’; % remember x must be a column vector!

for t = 1:50
x = P * x;
disp([t x’])

end

Edited output:

Time Home 2 3 4 5 Cafe

1 0.3333 0 0.6667 0 0 0
2 0.3333 0.2222 0 0.4444 0 0
3 0.4074 0 0.2963 0 0.2963 0
4 0.4074 0.0988 0 0.2963 0 0.1975
5 0.4403 0 0.1646 0 0.1975 0.1975
6 0.4403 0.0549 0 0.1756 0 0.3292
7 0.4586 0 0.0951 0 0.1171 0.3292
8 0.4586 0.0317 0 0.1024 0 0.4073

...
20 0.4829 0.0012 0 0.0040 0 0.5119

...
40 0.4839 0.0000 0 0.0000 0 0.5161

...
50 0.4839 0.0000 0 0.0000 0 0.5161

By running the program for long enough, we soon find the limiting probabil-
ities: he ends up at home about 48% of the time, and at the cafe about 52%
of the time. Perhaps this is a little surprising; from the transition probabilities,
we might have expected him to get to the cafe rather more easily. It just goes to
show that you should never trust your intuition when it comes to statistics!

152 CHAPTER 6: Matrices and Arrays

Note that the Markov chain approach is not a simulation: one gets the theo-
retical probabilities each time (this can all be done mathematically, without a
computer).

6.6 LINEAR EQUATIONS

A problem that often arises in scientific applications is the solution of a system
of linear equations, e.g.,

3x + 2y − z = 10 (6.2)

−x + 3y + 2z = 5 (6.3)

x − y − z = −1. (6.4)

MATLAB was designed to solve a system like this directly and very easily, as we
shall now see.

If we define the matrix of coefficients, A, as

A =
⎡
⎣ 3 2 −1

−1 3 2
1 −1 −1

⎤
⎦ ,

and the vectors of unknowns, x, and the right-hand side, b, as

x =
⎡
⎣ x

y

z

⎤
⎦ , b =

⎡
⎣ 10

5
−1

⎤
⎦ ,

we can write the above system of three equations in matrix form as

⎡
⎣ 3 2 −1

−1 3 2
1 −1 −1

⎤
⎦

⎡
⎣ x

y

z

⎤
⎦ =

⎡
⎣ 10

5
−1

⎤
⎦ ,

or even more concisely as the single matrix equation

Ax = b. (6.5)

The solution may then be written as

x = A−1b, (6.6)

where A−1 is the matrix inverse of A (i.e., the matrix which when multiplied
by A gives the identity matrix I).

6.6 Linear equations 153

6.6.1 MATLAB’s solution

To see how MATLAB solves this system, first recall that the left division oper-
ator \ may be used on scalars, i.e., a \ b is the same as b / a if a and b are
scalars. However, it can also be used on vectors and matrices, in order to solve
linear equations. Enter the following statements on the command line to solve
Equations (6.2)–(6.4):

A = [3 2 -1; -1 3 2; 1 -1 -1];
b = [10 5 -1]’;
x = A \ b

This should result in

x =
-2.0000
5.0000

-6.0000

In terms of our notation, this means that the solution is x = −2, y = 5, z = −6.

You can think of the matrix operation A \ b as ‘b divided by A’, or as ‘the in-
verse of A multiplied by b’, which is essentially what Equation (6.6) means.
A colleague of mine reads this operation as ‘A under b’, which you may also
find helpful.

You may be tempted to implement Equation (6.6) in MATLAB as follows:

x = inv(A) * b

since the function inv finds a matrix inverse directly. However, A \ b is actually
more accurate and efficient; see MATLAB Help: Functions — Alphabetical List
and click on inv.

6.6.2 The residual

Whenever we solve a system of linear equations numerically we need to have
some idea of how accurate the solution is. The first thing to check is the residual,
defined as

r = A*x - b

where x is the result of the operation x = A \ b. Theoretically the residual r
should be zero, since the expression A * x is supposed to be equal to b, ac-
cording to Equation (6.5), which is the equation we are trying to solve. In our
example here the residual is (check it)

154 CHAPTER 6: Matrices and Arrays

r =
1.0e-014 *

0
-0.3553

0

This seems pretty conclusive: all the elements of the residual are less than 10−14

in absolute value. Unfortunately, there may still be problems lurking beneath
the surface, as we shall see shortly.

We will, however, first look at a situation where the residual turns out to be far
from zero.

6.6.3 Over-determined systems

When we have more equations than unknowns, the system is called over-
determined, e.g.,

x − y = 0

y = 2

x = 1.

Surprisingly, perhaps, MATLAB gives a solution to such a system. If

A = [1 -1; 0 1; 1 0];
b = [0 2 1]’;

the statement

x = A \ b

results in

x =
1.3333
1.6667

The residual r = A*x - b is now

r =
-0.3333
-0.3333
0.3333

6.6 Linear equations 155

What happens in this case is that MATLAB produces the least squares best fit.
This is the value of x which makes the magnitude of r, i.e.,

√
r(1)2 + r(2)2 + r(3)3,

as small as possible. You can compute this quantity (0.5774) with sqrt(r’ * r)
or sqrt(sum(r .* r)). There is a nice example of fitting a decaying exponen-
tial function to data with a least squares fit in MATLAB Help: Mathematics:
Matrices and Linear Algebra: Solving Linear Equations: Overdetermined
Systems.

6.6.4 Under-determined systems

If there are fewer equations than unknowns, the system is called under-
determined. In this case there are an infinite number of solutions; MATLAB will
find one which has zeros for some of the unknowns.

The equations in such a system are the constraints in a linear programming
problem.

6.6.5 Ill conditioning

Sometimes the coefficients of a system of equations are the results of an exper-
iment, and may be subject to error. We need in that case to know how sensitive
the solution is to the experimental errors. As an example, consider the system

10x + 7y + 8z + 7w = 32

7x + 5y + 6z + 5w = 23

8x + 6y + 10z + 9w = 33

7x + 5y + 9z + 10w = 31

Use matrix left division to show that the solution is x = y = z = w = 1. The
residual is exactly zero (check it), and all seems well.

However, if we change the right-hand side constants to 32.1, 22.9, 32.9 and
31.1, the ‘solution’ is now given by x = 6, y = −7.2, z = 2.9,w = −0.1. The
residual is very small.

A system like this is called ill-conditioned, meaning that a small change in the
coefficients leads to a large change in the solution. The MATLAB function rcond
returns the condition estimator, which tests for ill conditioning. If A is the coef-
ficient matrix, rcond(A) will be close to zero if A is ill-conditioned, but close
to 1 if it is well-conditioned. In this example, the condition estimator is about
2 × 10−4, which is pretty close to zero.

Some authors suggest the rule of thumb that a matrix is ill-conditioned if its
determinant is small compared to the entries in the matrix. In this case the

156 CHAPTER 6: Matrices and Arrays

determinant of A is 1 (check with the function det) which is about an order of
magnitude smaller than most of its entries.

6.6.6 Matrix division

Matrix left division, A\B, is defined whenever B has as many rows as A. This
corresponds formally to inv(A)*B although the result is obtained without com-
puting the inverse explicitly. In general,

x = A \ B

is a solution to the system of equations defined by Ax = B.

If A is square, matrix left division is done using Gauss elimination.

If A is not square the over- or under-determined equations are solved in the
least squares sense. The result is a m × n matrix X, where m is the number of
columns of A and n is the number of columns of B.

Matrix right division, B/A, is defined in terms of matrix left division such
that B/A is the same as (A’\B’)’. So with a and b defined as for Equa-
tions (6.2)–(6.4), this means that

x = (b’/a’)’

gives the same solution, doesn’t it? Try it, and make sure you can see why.

Sometimes the least squares solutions computed by \ or / for over- or under-
determined systems can cause surprises, since you can legally divide one vector
by another. For example, if

a = [1 2];
b = [3 4];

the statement

a / b

results in

ans =
0.4400

This is because a/b is the same as (b’\a’)’, which is formally the solution of
b′ x′ = a′. The result is a scalar, since a’ and b’ each have one column, and is

6.7 Sparse matrices 157

the least squares solution of

(
3
4

)
x =

(
1
2

)
.

With this under your belt, can you explain why

a \ b

gives

ans =
0 0

1.5000 2.0000

(try writing the equations out in full)?

A complete discussion of the algorithms used in solving simultaneous linear
equations may be found in the online documentation under MATLAB: Ref-
erence: MATLAB Function Reference: Alphabetical List of Functions: Arith-
metic Operators + - * / \ ^ ’.

6.7 SPARSE MATRICES

Matrices can sometimes get very large, with thousands of entries. Very large
matrices can occupy huge amounts of memory, and processing them can take
up a lot of computer time. For example, a system of n simultaneous linear
equations requires n2 matrix entries, and the computing time to solve them is
proportional to n3.

However, some matrices have relatively few non-zero entries. Such matrices are
called sparse as opposed to full. The father of modern numerical linear algebra,
J.H. Wilkinson, has remarked that a matrix is sparse if ‘it has enough zeros
that it pays to take advantage of them’. MATLAB has facilities for exploiting
sparsity, which have the potential for saving huge amounts of memory and
processing time. For example, the matrix representation of a certain type of
partial differential equation (a 5-point Laplacian) on a square 64 × 64 grid is
a 4096 × 4096 element matrix with 20224 non-zero elements. The sparse form
of this matrix in MATLAB occupies only 250 kB of memory, whereas the full
version of the same matrix would occupy 128 MB, which is way beyond the
limits of most desktop computers. The solution of the system Ax = b using
sparse techniques is about 4000 times faster than solving the full case, i.e.,
10 seconds instead of 12 hours!

158 CHAPTER 6: Matrices and Arrays

In this section (which you can safely skip, if you want to) we will look briefly
at how to create sparse matrices in MATLAB. For a full description of sparse
matrix techniques consult MATLAB Help: Mathematics: Sparse Matrices.

First an example, then an explanation. The transition probability matrix for the
random walk problem in Section 6.5 is a good candidate for sparse representa-
tion. Only ten of its 36 elements are non-zero. Since the non-zeros appear only
on the diagonal and the sub- and super-diagonals, a matrix representing more
intersections would be even sparser. For example, a 100 × 100 representation
of the same problem would have only 198 non-zero entries, i.e., 1.98%.

To represent a sparse matrix all that MATLAB needs to record are the non-zero
entries with their row and column indices. This is done with the sparse func-
tion. The transition matrix of Section 6.5 can be set up as a sparse matrix with
the statements

n = 6;
P = sparse(1, 1, 1, n, n);
P = P + sparse(n, n, 1, n, n);
P = P + sparse(1:n-2, 2:n-1, 1/3, n, n);
P = P + sparse(3:n, 2:n-1, 2/3, n, n)

which result in (with format rat)

P =

(1,1) 1
(1,2) 1/3
(3,2) 2/3
(2,3) 1/3
(4,3) 2/3
(3,4) 1/3
(5,4) 2/3
(4,5) 1/3
(6,5) 2/3
(6,6) 1

Each line of the display of a sparse matrix gives a non-zero entry with its row
and column, e.g., 2/3 in row 3 and column 2. To display a sparse matrix in full
form, use the function

full(P)

which results in

6.7 Sparse matrices 159

ans =
1 1/3 0 0 0 0
0 0 1/3 0 0 0
0 2/3 0 1/3 0 0
0 0 2/3 0 1/3 0
0 0 0 2/3 0 0
0 0 0 0 2/3 1

(also with format rat).

The form of the sparse function used here is

sparse(rows, cols, entries, m, n)

This generates an m× n sparse matrix with non-zero entries having subscripts
(rows, cols) (which may be vectors), e.g., the statement

sparse(1:n-2, 2:n-1, 1/3, n, n);

(with n = 6) creates a 6×6 sparse matrix with 4 non-zero elements, being 1/3’s
in rows 1–4 and columns 2–5 (most of the super-diagonal). Note that repeated
use of sparse produces a number of 6 × 6 matrices, which must be added
together to give the final form. Sparsity is therefore preserved by operations on
sparse matrices. See help for more details of sparse.

It’s quite easy to test the efficiency of sparse matrices. Construct a (full) identity
matrix

a = eye(1000);

Determine the time it takes to compute a^2. Now let us take advantage of the
sparseness of a. It is an ideal candidate for being represented as a sparse matrix,
since only 1000 of its one million elements are non-zero. It is represented in
sparse form as

s = sparse(1:1000, 1:1000, 1, 1000, 1000);

Now check the time it takes to find a^2. Use tic and toc to find out how much
faster is the computation.

The function full(a) returns the full form of the sparse matrix a (without
changing the sparse representation of a itself). Conversely, sparse(a) returns
the sparse form of the full matrix a.

The function spy provides a neat visualization of sparse matrices. Try it on P.
Then enlarge P to about 50 × 50, and spy it.

160 CHAPTER 6: Matrices and Arrays

SUMMARY

■ A matrix is a 2-D array. Elements may be referenced in the conventional
way with two subscripts. Alternatively, one subscript may be used, in
which case the matrix is ‘unwound’ by columns.

■ The colon operator may be used to represent all the rows or columns of
a matrix, and also as a single subscript.

■ The keyword end refers to the last row or column of a matrix.
■ Use repmat to duplicate rows or columns of a matrix.
■ Use the empty array [] to delete rows or columns of a matrix.
■ Arrays may have more than two dimensions. In the case of a 3-D array

the third subscript may be thought of as numbering pages, where each
page contains a matrix defined by the first two subscripts.

■ The matrix operations of multiplication and exponentiation are imple-
mented with the matrix operators * and ^.

■ The matrix left division operator \ is used for solving systems of lin-
ear equations directly. Because the matrix division operators \ and /

can sometimes produce surprising results with the least squares solution
method, you should always compute the residual when solving a system
of equations.

■ If you work with large matrices with relatively few non-zero entries you
should consider using MATLAB’s sparse matrix facilities.

EXERCISES

6.1 Set up any 3 × 3 matrix a. Write some command-line statements to per-
form the following operations on a:
(a) interchange columns 2 and 3;
(b) add a fourth column (of 0’s);
(c) insert a row of 1’s as the new second row of a (i.e. move the cur-

rent second and third rows down);
(d) remove the second column.

6.2 Compute the limiting probabilities for the student in Section 6.5 when
he starts at each of the remaining intersections in turn, and confirm that
the closer he starts to the cafe, the more likely he is to end up there.
Compute P^50 directly. Can you see the limiting probabilities in the
first row?

6.3 Solve the equations

2x − y + z = 4

x + y + z = 3

3x − y − z = 1

Exercises 161

using the left division operator. Check your solution by computing the
residual. Also compute the determinant (det) and the condition esti-
mator (rcond). What do you conclude?

6.4 This problem, suggested by R.V. Andree, demonstrates ill conditioning
(where small changes in the coefficients cause large changes in the so-
lution). Use the left division operator to show that the solution of the
system

x + 5.000y = 17.0

1.5x + 7.501y = 25.503

is x = 2, y = 3. Compute the residual.
Now change the term on the right-hand side of the second equation
to 25.501, a change of about one part in 12000, and find the new so-
lution and the residual. The solution is completely different. Also try
changing this term to 25.502, 25.504, etc. If the coefficients are subject
to experimental errors, the solution is clearly meaningless. Use rcond to
find the condition estimator and det to compute the determinant. Do
these values confirm ill conditioning?
Another way to anticipate ill conditioning is to perform a sensitivity
analysis on the coefficients: change them all in turn by the same small
percentage, and observe what effect this has on the solution.

6.5 Use sparse to represent the Leslie matrix in Section 6.4. Test your rep-
resentation by projecting the rabbit population over 24 months.

6.6 If you are familiar with Gauss reduction it is an excellent programming
exercise to code a Gauss reduction directly with operations on the rows
of the augmented coefficient matrix. See if you can write a function

x = mygauss(a, b)

to solve the general system Ax = b. Skillful use of the colon operator in
the row operations can reduce the code to a few lines!
Test it on A and b with random entries, and on the systems in Sec-
tion 6.6 and Exercise 16.4. Check your solutions with left division.

CHAPTER 7

Function M-files

CONTENTS

Example:
Newton’s
method again ... 163
Basic rules 165
Subfunctions......... 170
Private functions.... 170
P-code files 170
Improving M-file
performance with
the Profiler 171

Function
handles 171
Command/func-
tion duality 173
Function name
resolution........ 173
Debugging
M-files 174
Debugging a script . 174
Debugging a
function 176

Recursion........ 176
Summary 177
Exercises 179
Supplementary
material 180

THE OBJECTIVE OF THIS CHAPTER IS TO ENABLE YOU TO:

■ Write your own function M-files.

We have already seen that MATLAB has a number of built-in (compiled) func-
tions, e.g., sin, sqrt, sum. You can verify that they are built-in by attempting to
type them. Try type sin for example. MATLAB also has some functions in the
form of function M-files, e.g., fzero, why. You can see what’s in them with type,
e.g., type why.

Functions are indispensable when it comes to breaking a problem down into
manageable logical pieces. Hence, MATLAB enables you to create your own
function M-files. A function M-file is similar to a script file in that it also has a
.m extension. However, a function M-file differs from a script file in that a func-
tion M-file communicates with the MATLAB workspace only through specially
designated input and output arguments.

We begin this chapter by extending the ideas about implementing function
M-files introduced in Chapter 3, Section 3.2.2. We do this by example. We
then deal with the basic rules and the various input/output possibilities avail-
able to you in the development of function M-files. For additional information
and examples type help function in the Command Window and click on
doc function at the bottom of the displayed information.

7.1 EXAMPLE: NEWTON’S METHOD AGAIN

Newton’s method may be used to solve a general equation f (x) = 0 by repeat-
ing the assignment

x becomes x − f (x)

f ′(x)
,

where f ′(x) (i.e., df/dx) is the first derivative of f (x). The process continues
until successive approximations to x are close enough.

Suppose that f (x) = x3 +x−3, i.e., we want to solve the equation x3 +x−3 = 0
(another way of stating the problem is to say we want to find the zero of f (x)).

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00013-0
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

163

https://doi.org/10.1016/B978-0-08-102997-8.00013-0

164 CHAPTER 7: Function M-files

We have to be able to differentiate f (x). That’s quite easy here: f ′(x) = 3x2 +1.
We could write inline objects for both f (x) and f ′(x), but for this example we
will use function M-files instead.

Use the Editor to create and save (in the current MATLAB directory) the func-
tion file f.m as follows:

function y = f(x)

y = x^3 + x - 3;

Then create and save another function file df.m:

function y = df(x)

y = 3*x^2 + 1;

Now write a separate script file, newtgen.m (in the same directory), which will
stop either when the relative error in x is less than 10−8, or after 20 steps, say:

% Newton’s method in general

% excludes zero roots!

steps = 0; % iteration counter

x = input(’Initial guess: ’); % estimate of root

re = 1e-8; % required relative error

myrel = 1;

while myrel > re & (steps < 20)

xold = x;

x = x - f(x)/df(x);

steps = steps + 1;

disp([x f(x)])

myrel = abs((x-xold)/x);

end

if myrel <= re

disp(’Zero found at’)

disp(x)

else

disp(’Zero NOT found’)

end

Note that there are two conditions that will stop the while loop: convergence,
or the completion of 20 steps. Otherwise the script could run indefinitely.

7.2 Basic rules 165

Here is a sample run (with format long e), starting with x = 1:

Initial guess: 1
1.250000000000000e+000 2.031250000000000e-001
1.214285714285714e+000 4.737609329445558e-003
1.213412175782825e+000 2.779086666571118e-006
1.213411662762407e+000 9.583445148564351e-013
1.213411662762230e+000 -4.440892098500626e-016

Zero found at
1.213411662762230e+000

Note:

■ The variable y in the function files f.m and df.m is the output argument.
It is a dummy variable, and defines how output will be sent back to the
outside world.

By the way, you realize of course that you can use your own functions from the
command line, don’t you? For example,

� f(2)

should return 7 with f.m defined as above.

7.2 BASIC RULES

Try the following more general example, which returns the mean (avg) and
standard deviation (stdev) of the values in the vector x. Although there are
two MATLAB functions to do this (mean and std), it is useful to have them
combined into one. Write a function file stats.m:

function [avg, stdev] = stats(x) % function definition line
% STATS Mean and standard deviation % H1 line
% Returns mean (avg) and standard % Help text
% deviation (stdev) of the data in the
% vector x, using Matlab functions

avg = mean(x); % function body
stdev = std(x);

Now test it in the Command Window with some random numbers, e.g.,

166 CHAPTER 7: Function M-files

r = rand(100,1);
[a, s] = stats(r);

Note the following points about function M-files in general:

■ General form of a function
A function M-file name.m has the following general form:

function [outarg1, outarg2, . . .] = name(inarg1, inarg2, . . .)
% comments to be displayed with help
...
outarg1 = ... ;
outarg2 = ... ;
...

■ function keyword
The function file must start with the keyword function (in the function
definition line).

■ Input and output arguments
The input and output arguments (inarg1, outarg1, etc.) are ‘dummy’ vari-
ables, and serve only to define the function’s means of communication
with the workspace. Other variable names may therefore be used in their
place when the function is called (referenced).
You can think of the actual input arguments being copied into the
dummy input arguments when the function is called. So when stats(r)
is called in the above example, the actual input argument r is copied
into the input argument x in the function file. When the function returns
(i.e., execution of it is completed) the dummy output arguments avg and
stdev in the function file are copied into the actual output arguments a
and s.

■ Multiple output arguments
If there is more than one output argument, the output arguments must
be separated by commas and enclosed in square brackets in the function
definition line, as shown.
However, when a function is called with more than one output argument,
the actual output arguments may be separated by commas or spaces.
If there is only one output argument square brackets are not necessary.

■ Naming convention for functions
Function names must follow the MATLAB rules for variable names.
If the filename and the function definition line name are different, the
internal name is ignored.

■ Help text
When you type help function_name, MATLAB displays the comment lines
that appear between the function definition line and the first non-
comment (executable or blank) line.

7.2 Basic rules 167

The first comment line is called the H1 line. The lookfor function searches
on and displays only the H1 line. The H1 lines of all M-files in a direc-
tory are displayed under the Description column of the Desktop Current
Directory browser.
You can make help text for an entire directory by creating a file with the
name Contents.m that resides in the directory. This file must contain only
comment lines. The contents of Contents.m is displayed with the com-
mand

help directory_name

If a directory does not have a Contents.m file, this command displays the
H1 line of each M-file in the directory.

■ Local variables: scope
Any variables defined inside a function are inaccessible outside the func-
tion. Such variables are called local variables—they exist only inside the
function, which has its own workspace separate from the base workspace
of variables defined in the Command Window.
This means that if you use a variable as a loop index, say, inside a func-
tion, it will not clash with a variable of the same name in the workspace
or in another function.
You can think of the scope of a variable as the range of lines over which
the variable is accessible.

■ Global variables
Variables which are defined in the base workspace are not normally ac-
cessible inside functions, i.e., their scope is restricted to the workspace
itself, unless they have been declared global, e.g.,

global PLINK PLONK

If several functions, and possibly the base workspace, all declare particu-
lar variables as global, then they all share single copies of those variables.
MATLAB recommends that global variables be typed in capital letters, to
remind you that they are global.
The function isglobal(A) returns 1 if A is global, and 0 otherwise.
The command who global gives a list of global variables.
Use clear global to make all variables non-global, or clear PLINK to
make PLINK non-global.

■ Persistent variables
A variable in a function may be declared persistent. Local variables
normally cease to exist when a function returns. Persistent variables, how-
ever, remain in existence between function calls. A persistent variable is
initialized to the empty array.
In the following example, the persistent variable count is used to count
how many times the function test is called:

168 CHAPTER 7: Function M-files

function test
persistent count
if isempty(count)

count = 1
else

count = count + 1
end

Persistent variables remain in memory until the M-file is cleared or
changed, e.g.,

clear test

The function mlock inside an M-file prevents the M-file from being
cleared. A locked M-file is unlocked with munlock. The function mislocked
indicates whether an M-file can be cleared or not.
The Help entry on persistent declares confidently: ‘It is an error to de-
clare a variable persistent if a variable with the same name exists in the
current workspace.’ However, this is definitely not the case at the time of
writing (I tried it!).

■ Functions that do not return values
You might want to write a function that doesn’t return values (such
functions are called procedures or subroutines in languages like Pascal and
Fortran, and void in C++ and Java). In that case you simply omit the out-
put argument(s) and the equal sign in the function definition line. For
example, the following function will display n asterisks:

function stars(n)
asteriks = char(abs(’*’)*ones(1,n));
disp(asteriks)

Go back to Chapter 6 for an explanation of how it works.
Write such a function file (stars.m), and test it out, e.g., stars(13) should
produce 13 asterisks.

■ Vector arguments
It should come as no surprise that input and output arguments may be
vectors, e.g., the following function generates a vector of n random rolls
of a die:

function d = dice(n)
d = floor(6 * rand(1, n) + 1);

When an output argument is a vector, it is initialized each time the func-
tion is called, any previous elements being cleared. Its size at any moment
is therefore determined by the most recent call of the function. For exam-
ple, suppose the function test.m is defined as

function a = test
a(3) = 92;

7.2 Basic rules 169

Then if b is defined in the base workspace as

b =
1 2 3 4 5 6

the statement

b = test

results in

b =
0 0 92

■ How function arguments are passed
If a function changes the value of any of its input arguments, the change is
not reflected in the actual input argument on return to the workspace (un-
less the function is called with the same input and output argument—see
below). For the technically minded, input arguments appear to be passed
by value.
You might think that passing a large matrix as an input argument by
value is wasteful of memory, and you would be correct. However, the
designers of MATLAB were aware of this, and so an input argument is only
passed by value if a function modifies it (although the modification is not
reflected on return). If a function does not modify an input argument it
is passed by reference.

■ Simulated pass by reference
A function may be called with the same actual input and output argu-
ment. For example, the following function prune.m removes all the zero
elements from its input argument:

function y = prune(x)
y = x(x ~= 0);

(if you can’t figure out why, refer to Subscripting with logical vectors in
Chapter 5).
You can use it to remove all the zero elements of the vector x as follows:

x = prune(x)

■ Checking the number of function arguments
A function may be called with all, some, or none of its input arguments.
If called with no arguments, the parentheses must be omitted. You may
not use more input arguments than appear in its definition.
The same applies to output arguments—you may specify all, some, or
none of them when you use the function. If you call a function with no
output arguments, the value of the first one in the definition is returned.
There are times when a function may need to know how many input/out-
put arguments are used on a particular call. In that case, the functions
nargin and nargout can be used to determine the number of actual input
and output arguments. For example,

170 CHAPTER 7: Function M-files

function y = foo(a, b, c);
disp(nargin);
...

will display the number of input arguments present on each call of foo.
■ Passing a variable number of arguments

The functions varargin and varargout allow you to call a function with
any number of input or output arguments. Since this facility involves
packing arguments into a cell array, discussion of it is deferred to Chap-
ter 11.

7.2.1 Subfunctions

A function M-file may contain the code for more than one function. The first
function in a file is the primary function, and is the one invoked with the M-file
name. Additional functions in the file are called subfunctions, and are visible
only to the primary function and to other subfunctions.

Each subfunction begins with its own function definition line. Subfunctions
follow each other in any order after the primary function.

7.2.2 Private functions

A private function is a function residing in a subdirectory with the name
private. Private functions are visible only to functions in the parent directory.
See Help for more details.

7.2.3 P-code files

The first time a function is called during a MATLAB session it is parsed (‘com-
piled’) into pseudocode and stored in memory to obviate the need for it to be
parsed again during the current session. The pseudocode remains in memory
until you clear it with clear function_name (see Help for all the possibilities
with clear).

You can use the pcode function to save the parsed version of an M-file for use
in later MATLAB sessions, or by users from whom you want to hide your algo-
rithms. For example, the command

pcode stats

parses stats.m and stores the resulting pseudocode in the file named stats.p.

MATLAB is very efficient at parsing so producing your own P-code files seldom
makes much of a speed difference, except in the case of large GUI applications
where many M-files have to be parsed before the application surfaces.

7.3 Function handles 171

7.2.4 Improving M-file performance with the Profiler

The MATLAB Profiler enables you to see where the bottlenecks in your pro-
grams are, e.g., which functions are consuming most of the time. With this
information you can often redesign programs to be more efficient. To find out
more about this utility open the MATLAB Help documentation via the ‘?’ at
the top of the desktop and type “Profiler” in the search space. You should be
at the document titled “The Profiler Utility”.

7.3 FUNCTION HANDLES

Our script file newtgen.m in Section 7.1 solves the equation f (x) = 0, where
f (x) is defined in the function file with the specific name f.m. This is restrictive
because to solve a different equation f.m has to be edited first. To make newtgen
even more general, it can be rewritten as a function M-file itself, with a handle
to f.m as an input argument. This process is made possible by the built-in
function feval, and the concept of a function handle, which we now examine.

Try the following on the command line:

fhandle = @sqrt;
feval(fhandle, 9)
feval(fhandle, 25)

Can you see that feval(fhandle, x) is the same as sqrt(x)? The statement

fhandle = @sqrt

creates a handle to the function sqrt. The handle provides a way of referring
to the function, for example in a list of input arguments to another function.
A MATLAB function handle is similar to a pointer in C++, although more gen-
eral.

If you have still got a function file f.m defined for f (x) = x3 + x − 3, verify that

feval(@f, 2)

for example, returns the same value as f(2).

■ In general, the first argument of feval is a handle to the function to be
evaluated in terms of the subsequent arguments of feval.

You can use feval inside a function to evaluate another function whose handle
is passed as an argument. as we will see now. As an example, we would like to
rewrite our newtgen script as a function newtfun, to be called as follows,

172 CHAPTER 7: Function M-files

[x f conv] = newtfun(fh, dfh, x0)

where fh and dfh are handles for the M-files containing f (x) and f ′(x) respec-
tively, and x0 is the initial guess. The outputs are the zero, the function value
at the zero, and an argument conv to indicate whether or not the process has
converged. The complete M-file newtfun.m is as follows:

function [x, f, conv] = newtfun(fh, dfh, x0)
% NEWTON Uses Newton’s method to solve f(x) = 0.
% fh is handle to f(x), dfh is handle to f’(x).
% Initial guess is x0.
% Returns final value of x, f(x), and
% conv (1 = convergence, 0 = divergence)

steps = 0; % iteration counter
x = x0;
re = 1e-8; % required relative error
myrel = 1;

while myrel > re & (steps < 20)
xold = x;
x = x - feval(fh, x)/feval(dfh, x);
steps = steps + 1;
disp([x feval(fh, x)])
myrel = abs((x-xold)/x);

end;

if myrel <= re
conv = 1;

else
conv = 0;

end;

f = feval(fh, x);

Try it out. Verify that you can call newtfun with less than three output variables.
Also check help newton.

A function handle gives you more than just a reference to the function. Open
the help document and search for “function handles” to find more informa-
tion on this topic.

Functions, such as feval, fplot, newtfun, etc. which take function handles as
arguments are referred to by MATLAB as function functions, as opposed to func-
tions which take numeric arrays as arguments.

7.4 Command/function duality 173

Use of a function handle to evaluate a function supersedes the earlier use of
feval where a string containing the function’s name was passed as an argu-
ment.

7.4 COMMAND/FUNCTION DUALITY

In the earliest versions of MATLAB there was a clear distinction between com-
mands like

clear
save junk x y z
whos

and functions like

sin(x)
plot(x, y)

If commands had any arguments they had to be separated by blanks with no
brackets. Commands altered the environment, but didn’t return results. New
commands could not be created with M-files.

From Version 4 onwards commands and functions are ‘duals’, in that com-
mands are considered to be functions taking string arguments. So

axis off

is the same as

axis(’off’)

Other examples are

disp Error!
hold(’on’)

This duality makes it possible to generate command arguments with string
manipulations, and also to create new commands with M-files.

7.5 FUNCTION NAME RESOLUTION

Remember that a variable in the workspace can ‘hide’ a built-in function of the
same name, and a built-in function can hide an M-file.

Specifically, when MATLAB encounters a name it resolves it in the following
steps:

174 CHAPTER 7: Function M-files

1. Checks if the name is a variable.
2. Checks if the name is a subfunction of the calling function.
3. Checks if the name is a private function.
4. Checks if the name is in the directories specified by MATLAB’s search

path.

MATLAB therefore always tries to use a name as a variable first, before trying to
use it as a script or function.

7.6 DEBUGGING M-FILES

Run-time errors (as opposed to syntax errors) which occur inside function M-
files are often hard to fix, because the function workspace is lost when the error
forces a return to the base workspace. The Editor/Debugger enables you to get
inside a function while it is running, to see what’s going wrong.

7.6.1 Debugging a script

To see how to debug interactively, let’s first try the script newtgen.m in Sec-
tion 7.3. Go through the following steps.

■ Open newtgen.m with the MATLAB Editor/Debugger. (Incidentally, have
you found out that you can run the Editor directly from the command
line, e.g., with edit newtgen).
You will have noticed that the lines in the Editor window are numbered.
You can generate these line numbers from the command line for refer-
ence purposes with the command dbtype:

dbtype newtgen

1 % Newton’s method in general
2 % exclude zero roots!
3
4 steps = 0; % iteration counter
5 x = input(’Initial guess: ’); % estimate of root
6 re = 1e-8; % required relative error
7 myrel = 1;
8
9 while myrel > re & (steps < 20)

xold = x;
11 x = x - f(x)/df(x);
12 steps = steps + 1;
13 disp([x f(x)])
14 myrel = abs((x-xold)/x);
15 end;

7.6 Debugging M-files 175

16
17 if myrel <= re
18 disp(’Zero found at’)
19 disp(x)
20 else
21 disp(’Zero NOT found’)
22 end;

■ To get into Debug mode you need to set a breakpoint just before where
you think the problem might be. Alternatively, if you just want to ‘step
through’ a script line by line, set a breakpoint at the first executable state-
ment. The column to the right of the line numbers is called the breakpoint
alley. You can only set breakpoints at executable statements—these are
indicated by dashes in the breakpoint alley.
Set a breakpoint at line 4 (steps = 0;) by clicking in the breakpoint alley.
You can remove a breakpoint by clicking on the breakpoint icon, or us-
ing the Editor’s Breakpoints menu (this menu also allows you to specify
stopping conditions). You can also set/clear breakpoints on the current
line with the set/clear breakpoint button on the toolbar.

■ Having set your breakpoints, run the script in the Editor by clicking the
run button in the toolbar, or with Debug -> Run (F5).
You can also run the script from the command line.

■ When the script starts to run, there are two things in particular to notice.
First, the symbol K appears to left of the command-line prompt to remind
you that MATLAB is in debug mode.
Second, a green arrow appears just to the right of the breakpoint in the
Editor. The arrow indicates the next statement which is about to be exe-
cuted.

■ Now step through the script with Debug -> Step (F10). Note when line
5 is executed you need to enter the value of x at the command line.

■ When you get to line 11 (x = x - f(x)/df(x);) in this way, use Debug
-> Step In (F11) and the Debugger will take you into the functions f.m
and df.m.

■ Continue with F10. Note that output appears in the Command Window
as each disp statement is executed.

■ There are a number of ways of examining variable values in debug mode:

1. Position the cursor to the left of the variable in the Editor. Its cur-
rent value appears in a box—this is called a datatip.

2. Type the name of the variable in the Command Window.
3. Use the Array Editor: open the Workspace browser and double-click

a variable. If you arrange your windows carefully you can watch
the value of a variable change in the Array Editor while you step
through a program.
Note that you can view variables only in the current workspace.
The Editor has a Stack field to the right of the toolbar where you

176 CHAPTER 7: Function M-files

can select the workspace. For example, if you have stepped into f.m
the current workspace is shown as f. At this point you can view
variables in the newtgen workspace by selecting newtgen in the Stack
field.

You can use the Array Editor or the command line to change the value of
a variable. You can then continue to see how the script performs with the
new value.

■ Another useful debugging feature is Debug -> Go Until Cursor. This
enables you to continue running the script to the line where you’ve posi-
tioned the cursor.

■ To quit debugging click the exit debug mode button in the Editor/Debug-
ger toolbar, or select Debug -> Exit Debug Mode.
If you forget to quit debugging you won’t be able to get rid of the K
prompt on the command line!

7.6.2 Debugging a function

You can’t run a function directly in the Editor/Debugger—you have to set
a breakpoint in the function and run it from the command line. Let’s use
newtfun.m as an example.

■ Open newtfun.m in the Editor/Debugger.
■ Set a breakpoint at line 8 (steps = 0;).
■ In the Command Window set up function handles for f and df and call

newtfun:

fhand = @f;
dfhand = @df;
[x f conv] = newtfun(fhand, dfhand, 10)

■ Note that MATLAB goes into debug mode and takes you to the breakpoint
in newtfun. Now you can continue debugging as before.

Debugging may also be done from the command line with the debug func-
tions. See help debug.

7.7 RECURSION

Many (mathematical) functions are defined recursively, i.e., in terms of simpler
cases of themselves, e.g., the factorial function may be defined recursively as

n! = n × (n − 1)!
as long as 1! is defined as 1. MATLAB allows functions to call themselves; this
process is called recursion. The factorial function may be written recursively in
an M-file fact.m like this:

Summary 177

function y = fact(n)
% FACT Recursive definition of n!

if n > 1
y = n * fact(n-1);

else
y = 1;

end;

Recursive functions are usually written in this way: an if statement handles the
general recursive definition; the else part handles the special case (n = 1).

Although recursion appears deceptively simple, it is an advanced topic, as the
following experiment demonstrates. Insert the statement disp(n) into the def-
inition of fact immediately above the if statement, and run fact(5) from the
command line. The effect is what you might expect: the integers 5 to 1 in de-
scending order. Now move disp(n) to below the if statement, and see what
happens. The result is the integers 1 to 5 in ascending order now, which is
rather surprising.

In the first case, the value of n is displayed each time fact is called, and the
output is obvious enough. However, there is the world of difference between
a recursive function being called, and executed. In the second case, the disp
statement is only executed after the if has finished executing. And when is that
exactly? Well, when the initial call to fact takes place, n has the value 5, so the
first statement in the if is invoked. However, the value of fact(4) is not known
at this stage, so a copy is made of all the statements in the function which
will need to be executed once the value of fact(4) is known. The reference
to fact(4) makes fact call itself, this time with a value of 4 for n. Again, the
first statement in the if is invoked, and MATLAB discovers that it doesn’t know
the value of fact(3) this time. So another (different) copy is made of all the
statements that will have to be executed once the value of fact(3) is known.
And so each time fact is called, separate copies are made of all the statements
yet to be executed. Finally, MATLAB joyfully finds a value of n (1) for which it
actually knows the value of fact, so it can at last begin to execute (in reverse
order) the pile of statements which have been damming up inside the memory.

This discussion illustrates the point that recursion should be treated with re-
spect. While it is perfectly in order to use it in an example like this, it can chew
up huge amounts of computer memory and time.

SUMMARY

■ Good structured programming requires real problem-solving programs
to be broken down into function M-files.

178 CHAPTER 7: Function M-files

■ The name of a function in the function definition line should be the same
as the name of the M-file under which it is saved. The M-file must have
the extension .m.

■ A function may have input and output arguments, which are usually its
only way of communicating with the workspace. Input/output arguments
are dummy variables (placeholders).

■ Comment lines up to the first non-comment line in a function are dis-
played when help is requested for the function.

■ Variables defined inside a function are local variables and are inaccessible
outside the function.

■ Variables in the workspace are inaccessible inside a function unless they
have been declared global.

■ A function does not have to have any output arguments.
■ Input arguments have the appearance of being passed by value to a func-

tion. This means that changes made to an input argument inside a func-
tion are not reflected in the actual input argument when the function
returns.

■ A function may be called with fewer than its full number of input/output
arguments.

■ The functions nargin and nargout indicate how many input and output
arguments are used on a particular function call.

■ Variables declared persistent inside a function retain their values be-
tween calls to the function.

■ Subfunctions in an M-file are accessible only to the primary function and
to other subfunctions in the same M-file.

■ Private functions are functions residing in a sub-directory named private

and are accessible only to functions in the parent directory.
■ Functions may be parsed (compiled) with the pcode function. The result-

ing code has the extension .p and is called a P-code file.
■ The Profiler enables you to find out where your programs spend most of

their time.
■ A handle for a function is created with @.

A function may be represented by its handle. In particular the handle may
be passed as an argument to another function.

■ feval evaluates a function whose handle is passed to it as an argument.
■ MATLAB first tries to use a name as a variable, then as a built-in function,

and finally as one of the various types of function.
■ Command/function duality means that new commands can be created

with function M-files, and that command arguments may be generated
with string manipulations.

■ The Editor/Debugger enables you to work through a script or function
line-by-line in debug mode, examining and changing variables on the
way.

■ A function may call itself. This feature is called recursion.

Exercises 179

EXERCISES

7.1 Change the function stars of Section 7.2 to a function pretty so that it
will draw a line of any specified character. The character to be used must
be passed as an additional input (string) argument, e.g., pretty(6, ’$’)
should draw six dollar symbols.

7.2 Write a script newquot.m which uses the Newton quotient [f (x + h) −
f (x)]/h to estimate the first derivative of f (x) = x3 at x = 1, using suc-
cessively smaller values of h: 1, 10−1, 10−2, etc. Use a function M-file for
f (x).
Rewrite newquot as a function M-file able to take a handle for f (x) as an
input argument.

7.3 Write and test a function double(x) which doubles its input argument,
i.e., the statement x = double(x) should double the value in x.

7.4 Write and test a function swop(x, y) which will exchange the values of
its two input arguments.

7.5 Write your own MATLAB function to compute the exponential function
directly from the Taylor series:

ex = 1 + x + x2

2! + x3

3! + . . .

The series should end when the last term is less than 10−6. Test your
function against the built-in function exp, but be careful not to make x

too large—this could cause rounding error.
7.6 If a random variable X is distributed normally with zero mean and

unit standard deviation, the probability that 0 ≤ X ≤ x is given by the
standard normal function �(x). This is usually looked up in tables, but
it may be approximated as follows:

�(x) = 0.5 − r(at + bt2 + ct3),

where a = 0.4361836, b = −0.1201676, c = 0.937298, r =
exp(−0.5x2)/

√
2π , and t = 1/(1 + 0.3326x).

Write a function to compute �(x), and use it in a program to write out
its values for 0 ≤ x ≤ 4 in steps of 0.1. Check: �(1) = 0.3413.

7.7 Write a function

function [x1, x2, flag] = quad(a, b, c)

which computes the roots of the quadratic equation ax2 + bx + c = 0.
The input arguments a, b and c (which may take any values) are the
coefficients of the quadratic, and x1, x2 are the two roots (if they exist),
which may be equal. See Fig. 3.3 in Chapter 3 for the structure plan.
The output argument flag must return the following values, according
to the number and type of roots:

180 CHAPTER 7: Function M-files

0: no solution (a = b = 0, c �= 0);
1: one real root (a = 0, b �= 0, so the root is −c/b);
2: two real or complex roots (which could be equal if they are real);
99: any x is a solution (a = b = c = 0).

Test your function on the data in Exercise 3.5.
7.8 The Fibonacci numbers are generated by the sequence

1,1,2,3,5,8,13, . . .

Can you work out what the next term is? Write a recursive function f(n)
to compute the Fibonacci numbers F0 to F20, using the relationship

Fn = Fn−1 + Fn−2,

given that F0 = F1 = 1.
7.9 The first three Legendre polynomials are P0(x) = 1, P1(x) = x, and

P2(x) = (3x2 − 1)/2. There is a general recurrence formula for Legendre
polynomials, by which they are defined recursively:

(n + 1)Pn+1(x) − (2n + 1)xPn(x) + nPn−1(x) = 0.

Define a recursive function p(n,x) to generate Legendre polynomials,
given the form of P0 and P1. Use your function to compute p(2,x) for a
few values of x, and compare your results with those using the analytic
form of P2(x) given above.

APPENDIX 7.A SUPPLEMENTARY MATERIAL

Supplementary material related to this chapter can be found online at https://
doi.org/10.1016/B978-0-08-102997-8.00013-0.

https://doi.org/10.1016/B978-0-08-102997-8.00013-0
https://doi.org/10.1016/B978-0-08-102997-8.00013-0

CHAPTER 8

Loops

CONTENTS

Determinate
repetition with
for 181
Binomial coefficient 181
Update processes .. 182
Nested fors.......... 184

Indeterminate
repetition with
while 184
A guessing game ... 184
The while
statement............. 185
Doubling time of an
investment 186
Prime numbers 187
Projectile trajectory 188
break and continue 190
Menus 191

Summary 192
Exercises 192

THE OBJECTIVES OF THIS CHAPTER ARE TO ENABLE YOU TO
LEARN TO:

■ Program (or code) determinate loops with for.
■ Program (or code) indeterminate loops with while.

In Chapter 2 we introduced the powerful for statement, which is used to repeat
a block of statements a fixed number of times. This type of structure, where the
number of repetitions must be determined in advance, is sometimes called
determinate repetition. However, it often happens that the condition to end a
loop is only satisfied during the execution of the loop itself. Such a structure is
called indeterminate. We begin with a discussion of determinate repetition.

8.1 DETERMINATE REPETITION WITH for

8.1.1 Binomial coefficient

The binomial coefficient is widely used in mathematics and statistics. It is defined
as the number of ways of choosing r objects out of n without regard to order,
and is given by

(
n

r

)
= n!

r!(n − r)! . (8.1)

If this form is used, the factorials can get very big, causing an overflow. But a
little thought reveals we can simplify Equation (8.1) as follows:

(
n

r

)
= n(n − 1)(n − 2) · · · (n − r + 1)

r! , (8.2)

e.g.,
(

10
3

)
= 10!

3! × 7! = 10 × 9 × 8

1 × 2 × 3
.

Using Equation (8.2) is computationally much more efficient:

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00014-2
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

181

https://doi.org/10.1016/B978-0-08-102997-8.00014-2

182 CHAPTER 8: Loops

ncr = 1;
n = ...
r = ...

for k = 1:r
ncr = ncr * (n - k + 1) / k;

end

disp(ncr)

The binomial coefficient is sometimes pronounced ‘n-see-r’. Work through the
program by hand with some sample values.

8.1.2 Update processes

Many problems in science and engineering involve modeling a process where
the main variable is repeatedly updated over a period of time. Here is an ex-
ample of such an update process.

A can of orange juice at temperature 25◦C is placed in a fridge, where the am-
bient temperature F is 10◦C. We want to find out how the temperature of the
orange juice changes over a period of time. A standard way of approaching this
type of problem is to break the time period up into a number of small steps,
each of length dt. If Ti is the temperature at the beginning of step i, we can use
the following model to get Ti+1 from Ti :

Ti+1 = Ti − K dt (Ti − F), (8.3)

where K is a constant parameter depending on the insulating properties of the
can, and the thermal properties of orange juice. Assume that units are chosen
so that time is in minutes.

The following script implements this scheme. To make the solution more gen-
eral, take the starting time as a, and the end time as b. If dt is very small, it will
be inconvenient to have output displayed after every step, so the script also asks
you for the output interval opint. This is the time (in minutes) between succes-
sive rows of output. It checks that this interval is an integer multiple of dt . Try
the script with some sample values, e.g., dt = 0.2 minutes and opint = 5 min-
utes (these are the values used for the output below).

K = 0.05;
F = 10;
a = 0; % start time
b = 100; % end time
time = a; % initialize time
T = 25; % initialize temperature
load train % prepare to blow the whistle

8.1 Determinate repetition with for 183

dt = input(’dt: ’);

opint = input(’output interval (minutes): ’);

if opint/dt ~= fix(opint/dt)

sound(y, Fs) % blow the whistle!

disp(’output interval is not a multiple of dt!’);

end

clc

format bank

disp(’ Time Temperature’);

disp([time T]) % display initial values

for time = a+dt : dt : b

T = T - K * dt * (T - F);

if abs(rem(time, opint)) < 1e-6 % practically zero!

disp([time T])

end

end

Output:

Time Temperature

0 25.00

5.00 21.67

...

95.00 10.13

100.00 10.10

Note:

1. The function rem is used to display the results every opint minutes: when
time is an integer multiple of opint its remainder when divided by opint

should be zero. However, due to rounding error, the remainder is not
always exactly zero. It is therefore better to test whether its absolute value
is less than some very small value. (Rounding error is discussed in Chap-
ter 9).

2. While this is probably the most obvious way of writing the script, we
cannot easily plot the graph of temperature against time this way, since
time and T are scalars which are repeatedly updated. To plot the graph
they both need to be vectors (see Chapter 11).

3. Note how sound is implemented. See help audio for other interesting
sounds supplied by MATLAB.

184 CHAPTER 8: Loops

4. In case you are wondering how I got the headings in the right place, I’ll
let you into the secret. Run the script without a heading but with the nu-
merical output as you want it. Then simply paste the disp statement with
the headings into the command window and edit it until the headings
fall in the right place. Paste the final version of the disp statement into
the script.

5. Note the use of break to stop the script prematurely if the user gives bad
input. See below for more general use of break.

8.1.3 Nested fors

As we saw in Chapter 6 (Vectorizing nested fors), for loops can be nested
inside each other. The main point to note is that the index of the inner for

moves faster.

8.2 INDETERMINATE REPETITION WITH while

Determinate loops all have in common the fact that you can work out in prin-
ciple exactly how many repetitions are required before the loop starts. But in the
next example, there is no way in principle of working out the number of repeats,
so a different structure is needed.

8.2.1 A guessing game

The problem is easy to state. MATLAB ‘thinks’ of an integer between 1 and
10 (i.e., generates one at random). You have to guess it. If your guess is too
high or too low, the script must say so. If your guess is correct, a message of
congratulations must be displayed.

A little more thought is required here, so a structure plan might be helpful:

1. Generate random integer
2. Ask user for guess
3. While guess is wrong:

If guess is too low
Tell her it is too low

Otherwise
Tell her it is too high

Ask user for new guess
4. Polite congratulations
5. Stop.

Here is the script:

8.2 Indeterminate repetition with while 185

matnum = floor(10 * rand + 1);
guess = input(’Your guess please: ’);
load splat

while guess ~= matnum
sound(y, Fs)

if guess > matnum
disp(’Too high’)

else
disp(’Too low’)

end;

guess = input(’Your next guess please: ’);
end

disp(’At last!’)
load handel
sound(y, Fs) % hallelujah!

Try it out a few times. Note that the while loop repeats as long as matnum is not
equal to guess. There is no way in principle of knowing how many loops will
be needed before the user guesses correctly. The problem is truly indeterminate.

Note that guess has to be input in two places: firstly to get the while loop
going, and secondly during the execution of the while.

8.2.2 The while statement
In general the while statement looks like this:

while condition
statements

end

The while construct repeats statements WHILE its condition remains true. The
condition therefore is the condition to repeat once again. The condition is
tested each time BEFORE statements are repeated. Since the condition is evalu-
ated before statements are executed, it is possible to arrange for statements not to
be executed at all under certain circumstances. Clearly, condition must depend
on statements in some way, otherwise the loop will never end.

Recall that a vector condition is considered true only if all its elements are non-
zero.

The command-line form of while is:

while condition statements, end

186 CHAPTER 8: Loops

8.2.3 Doubling time of an investment

Suppose we have invested some money which draws 10 per cent interest per
year, compounded. We would like to know how long it takes for the investment
to double. More specifically, we want a statement of the account each year, until
the balance has doubled. The English statement of the problem hints heavily
that we should use an indeterminate loop with the following structure plan:

1. Initialize balance, year, interest rate
2. Display headings
3. Repeat

Update balance according to interest rate
Display year, balance

until balance exceeds twice original balance
4. Stop.

A program to implement this plan would be

a = 1000;
r = 0.1;
bal = a;
year = 0;
disp(’Year Balance’)

while bal < 2 * a
bal = bal + r * bal;
year = year + 1;
disp([year bal])

end

Note that the more natural phrase in the structure plan ‘until balance exceeds
twice original balance’ must be coded as

while bal < 2 * a ...

This condition is checked each time before another loop is made. Repetition
occurs only if the condition is true. Here’s some output (for an opening balance
of $1000):

Year Balance

1 1100.00
2 1210.00
3 1331.00

8.2 Indeterminate repetition with while 187

4 1464.10
5 1610.51
6 1771.56
7 1948.72
8 2143.59

Note that when the last loop has been completed, the condition to repeat is
false for the first time, since the new balance ($2143.59) is more than $2000.
Note also that a determinate for loop cannot be used here because we don’t
know how many loops are going to be needed until after the script has run
(although in this particular example perhaps you could work out in advance
how many repeats are needed?).

If you want to write the new balance only while it is less than $2000, all that
has to be done is to move the statement

disp([year bal])

until it is the first statement in the while loop. Note that the initial balance of
$1000 is displayed now.

8.2.4 Prime numbers

Many people are obsessed with prime numbers, and most books on program-
ming have to include an algorithm to test if a given number is prime. So here’s
mine.

A number is prime if it is not an exact multiple of any other number except
itself and 1, i.e., if it has no factors except itself and 1. The easiest plan of
attack then is as follows. Suppose P is the number to be tested. See if any
numbers N can be found that divide into P without remainder. If there are
none, P is prime. Which numbers N should we try? Well, we can speed things
up by restricting P to odd numbers, so we only have to try odd divisors N .
When do we stop testing? When N = P ? No, we can stop a lot sooner. In fact,
we can stop once N reaches

√
P , since if there is a factor greater than

√
P there

must be a corresponding one less than
√

P , which we would have found. And
where do we start? Well, since N = 1 will be a factor of any P , we should start
at N = 3. The structure plan is as follows:

1. Input P

2. Initialize N to 3
3. Find remainder R when P is divided by N

4. While R �= 0 and N <
√

P repeat:
Increase N by 2
Find R when P is divided by N

188 CHAPTER 8: Loops

5. If R �= 0 then
P is prime

Else
P is not prime

6. Stop.

Note that there may be no repeats—R might be zero the first time. Note also
that there are two conditions under which the loop may stop. Consequently,
an if is required after completion of the loop to determine which condition
stopped it.

See if you can write the script. Then try it out on the following numbers:
4058879 (not prime), 193707721 (prime) and 2147483647 (prime). If such
things interest you, the largest known prime number at the time of writing
was 26972593 − 1 (discovered in June 1999). It has 2098960 digits and would
occupy about 70 pages if it was printed in a newspaper. Obviously our algo-
rithm cannot test such a large number, since it’s unimaginably greater than
the largest number which can be represented by MATLAB. Ways of testing such
huge numbers for primality are described in D.E. Knuth, The Art of Computer
Programming. Volume 2: Seminumerical Algorithms (Addison-Wesley, 1981). This
particular whopper was found by the GIMPS (Great Internet Mersenne Prime
Search). See http://www.utm.edu/research/primes/largest.html for more infor-
mation on the largest known primes.

8.2.5 Projectile trajectory

In Chapter 3 we considered the flight of a projectile, given the usual equations
of motion (assuming no air resistance). We would like to know now when and
where it will hit the ground. Although this problem can be solved with a deter-
minate loop (if you know enough applied mathematics), it is of interest also
to see how to solve it with an indeterminate while loop. The idea is to calculate
the trajectory repeatedly with increasing time, while the vertical displacement
(y) remains positive. Here’s the script:

dt = 0.1;
g = 9.8;
u = 60;
ang = input(’Launch angle in degrees: ’);
ang = ang * pi / 180; % convert to radians
x = 0; y = 0; t = 0; % for starters
more(15)

while y >= 0
disp([t x y]);
t = t + dt;

http://www.utm.edu/research/primes/largest.html

8.2 Indeterminate repetition with while 189

FIGURE 8.1
Projectile trajectory.

y = u * sin(ang) * t - g * t^2 / 2;

x = u * cos(ang) * t;

end

The command more(n) gives you n lines of output before pausing. This is called
paging. To get another single line of output press Enter. To get the next page of
n lines press the spacebar. To quit the script press q.

Try the script for some different launch angles. Can you find the launch angle
which gives the maximum horizontal range (x)? What launch angle keeps it in
the air for the longest time?

Note that when the loop finally ends, the value of y will be negative (check this
by displaying y). However, the position of the disp statement ensures that only
positive values of y are displayed. If for some reason you need to record the last
value of t, say, before y becomes negative, you will need an if statement inside
the while, e.g.,

if y >= 0

tmax = t;

end

Change the script so that it displays the last time for which y was positive
(tmax), after the while loop has ended.

Now suppose we want to plot the trajectory, as shown in Fig. 8.1. Note in par-
ticular how the trajectory stops above the x-axis. We need to use vectors now.

190 CHAPTER 8: Loops

Here is the script:

dt = 0.1;
g = 9.8;
u = 60;
ang = input(’Launch angle in degrees: ’);
ang = ang * pi / 180; % convert to radians
xp = zeros(1); yp = zeros(1); % initialize
y = 0; t = 0;
i = 1; % initial vector subscript

while y >= 0
t = t + dt;
i = i + 1;
y = u * sin(ang) * t - g * t^2 / 2;
if y >= 0
xp(i) = u * cos(ang) * t;
yp(i) = y;

end
end

plot(xp, yp),grid

Note that the function zeros is used to initialize the vectors. This also clears
any vector of the same name hanging around in the workspace from previous
runs.

Note also the use of an if inside the while loop to ensure that only co-
ordinates of points above the ground are added to the vectors xp and yp.

If you want the last point above the ground to be closer to the ground, try a
smaller value of dt, e.g., 0.01.

8.2.6 break and continue

Any loop structure you are likely to encounter in scientific programming can
be coded with either ‘pure’ for or while loops, as illustrated by the examples
in this chapter. However, as a concession to intellectual laziness I feel obliged
to mention in passing the break and continue statements.

If there are a number of different conditions to stop a while loop you may
be tempted to use a for with the number of repetitions set to some accepted
cut-off value (or even Inf) but enclosing if statements which break out of the
for when the various conditions are met. Why is this not regarded as the best
programming style? The reason is simply that when you read the code months
later you will have to wade through the whole loop to find all the conditions

8.2 Indeterminate repetition with while 191

FIGURE 8.2
Menu window.

to end it, rather than see them all paraded at the start of the loop in the while
clause.

If you are going to insist on using break you will have to look it up in help for
yourself!

The continue statement is somewhat less virulent than break . . .

8.2.7 Menus

Try the following program, which sets up a menu window, as in Fig. 8.2:

k = 0;

while k ~= 3
k = menu(’Click on your option’, ’Do this’, ...

’Do that’, ’Quit’);
if k == 1

disp(’Do this ... press any key to continue ...’)
pause

elseif k == 2
disp(’Do that ... press any key to continue ...’)
pause

end
end

Note:

1. The menu function enables you to set up a menu of choices for a user.
2. menu takes only string arguments. The first one is the title of the menu.

The second and subsequent strings are the choices available to the user.
3. The value returned by menu (k here) numbers the user’s choices.
4. Since one has no idea how many choices the user will make, menu is

properly enclosed in an indeterminate while loop. The loop continues
to present the menu until the last option (in this example) is selected.

192 CHAPTER 8: Loops

5. You can design much more sophisticated menu-driven applications with
the MATLAB GUIDE (Graphical User Interface Development Environ-
ment).

SUMMARY

■ A for statement should be used to program a determinate loop, where the
number of repeats is known (in principle) before the loop is encountered.
This situation is characterized by the general structure plan:

Repeat N times:
Block of statements to be repeated

where N is known or computed before the loop is encountered for the
first time, and is not changed by the block.

■ A while statement should be used to program an indeterminate repeat
structure, where the exact number of repeats is not known in advance. An-
other way of saying this is that these statements should be used whenever
the truth value of the condition for repeating is changed in the body of
the loop. This situation is characterized by the following structure plan:

While condition is true repeat:
statements to be repeated (reset truth value of condition).

Note that condition is the condition to repeat.
■ The statements in a while construct may sometimes never be executed.
■ Loops may be nested to any depth.
■ The menu statement inside a while loop may be used to present a user

with a menu of choices.

EXERCISES

8.1 A person deposits $1000 in a bank. Interest is compounded monthly at
the rate of 1 per cent per month. Write a program which will compute
the monthly balance, but write it only annually for 10 years (use nested
for loops, with the outer loop for 10 years, and the inner loop for 12
months). Note that after 10 years, the balance is $3300.39, whereas if
interest had been compounded annually at the rate of 12 per cent per
year the balance would only have been $3105.85.
See if you can vectorize your solution.

8.2 There are many formulae for computing π (the ratio of a circle’s cir-
cumference to its diameter). The simplest is

π

4
= 1 − 1/3 + 1/5 − 1/7 + 1/9 − . . . (8.4)

Exercises 193

which comes from putting x = 1 in the series

arctanx = x − x3

3
+ x5

5
− x7

7
+ x9

9
− . . . (8.5)

(a) Write a program to compute π using Equation (8.4). Use as many
terms in the series as your computer will reasonably allow (start
modestly, with 100 terms, say, and re-run your program with
more and more each time). You should find that the series con-
verges very slowly, i.e. it takes a lot of terms to get fairly close
to π .

(b) Rearranging the series speeds up the convergence:

π

8
= 1

1 × 3
+ 1

5 × 7
+ 1

9 × 11
. . .

Write a program to compute π using this series instead. You
should find that you need fewer terms to reach the same level
of accuracy that you got in (a).

(c) One of the fastest series for π is

π

4
= 6 arctan

1

8
+ 2 arctan

1

57
+ arctan

1

239
.

Use this formula to compute π . Don’t use the MATLAB function
atan to compute the arctangents, since that would be cheating.
Rather use Equation (8.5).

(d) Can you vectorize any of your solutions (if you haven’t already)?
8.3 The following method of computing π is due to Archimedes:

1. Let A = 1 and N = 6
2. Repeat 10 times, say:

Replace N by 2N

Replace A by [2 − √
(4 − A2)]1/2

Let L = NA/2
Let U = L/

√
1 − A2/2

Let P = (U + L)/2 (estimate of π)
Let E = (U − L)/2 (estimate of error)
Print N , P , E

3. Stop.
Write a program to implement the algorithm.

8.4 Write a program to compute a table of the function

f (x) = x sin

[
π(1 + 20x)

2

]

over the (closed) interval [−1, 1] using increments in x of (a) 0.2,
(b) 0.1 and (c) 0.01.

194 CHAPTER 8: Loops

Use your tables to sketch graphs of f (x) for the three cases (by hand),
and observe that the tables for (a) and (b) give totally the wrong picture
of f (x).
Get your program to draw the graph of f (x) for the three cases, super-
imposed.

8.5 The transcendental number e (2.71828182845904 . . .) can be shown
to be the limit of

(1 + x)1/x

as x tends to zero (from above). Write a program which shows how this
expression converges to e as x gets closer and closer to zero.

8.6 A square wave of period T may be defined by the function

f (t) =
{

1 (0 < t < T)

−1 (−T < t < 0).

The Fourier series for f (t) is given by

F(t) = 4

π

∞∑
k=0

1

2k + 1
sin

[
(2k + 1)πt

T

]
.

It is of interest to know how many terms are needed for a good approx-
imation to this infinite sum. Taking T = 1, write a program to compute
and plot the sum to n terms of the series for t from −1.1 to 1.1 in steps
of 0.01, say. Run the program for different values of n, e.g. 1, 3, 6, etc.
Superimpose plots of F(t) against t for a few values of n.
On each side of a discontinuity a Fourier series exhibits peculiar os-
cillatory behavior known as the Gibbs phenomenon. Fig. 8.3 shows
this clearly for the above series with n = 20 (and increments in t of
0.01). The phenomenon is much sharper for n = 200 and t increments
of 0.001.

8.7 If an amount of money A is invested for k years at a nominal annual
interest rate r (expressed as a decimal fraction), the value V of the in-
vestment after k years is given by

V = A(1 + r/n)nk

where n is the number of compounding periods per year. Write a pro-
gram to compute V as n gets larger and larger, i.e. as the compounding
periods become more and more frequent, like monthly, daily, hourly,
etc. Take A = 1000, r = 4 per cent and k = 10 years. You should observe
that your output gradually approaches a limit. Hint: use a for loop
which doubles n each time, starting with n = 1.
Also compute the value of the formula Aerk for the same values of A, r

and k (use the MATLAB function exp), and compare this value with the
values of V computed above. What do you conclude?

Exercises 195

FIGURE 8.3
Fourier series: The Gibbs phenomenon.

8.8 Write a program to compute the sum of the series 12 + 22 + 32 . . . such
that the sum is as large as possible without exceeding 1000. The pro-
gram should display how many terms are used in the sum.

8.9 One of the programs in Section 8.2 shows that an amount of $1000 will
double in eight years with an interest rate of 10 per cent. Using the same
interest rate, run the program with initial balances of $500, $2000 and
$10 000 (say) to see how long they all take to double. The results may
surprise you.

8.10 Write a program to implement the structure plan of Exercise 3.2.
8.11 Use the Taylor series

cosx = 1 − x2

2! + x4

4! − x6

6! + . . .

to write a program to compute cosx correct to four decimal places (x is
in radians). See how many terms are needed to get 4-figure agreement
with the MATLAB function cos. Don’t make x too large; that could cause
rounding error.

8.12 A student borrows $10 000 to buy a used car. Interest on her loan is
compounded at the rate of 2 per cent per month while the outstanding
balance of the loan is more than $5000, and at 1 per cent per month
otherwise. She pays back $300 every month, except for the last month,
when the repayment must be less than $300. She pays at the end of the
month, after the interest on the balance has been compounded. The
first repayment is made one month after the loan is paid out. Write a
program which displays a monthly statement of the balance (after the
monthly payment has been made), the final payment, and the month
of the final payment.

196 CHAPTER 8: Loops

8.13 A projectile, the equations of motion of which are given in Chapter 4,
is launched from the point O with an initial velocity of 60 m/s at an
angle of 50◦ to the horizontal. Write a program which computes and
displays the time in the air, and horizontal and vertical displacement
from the point O every 0.5 seconds, as long as the projectile remains
above a horizontal plane through O.

8.14 When a resistor (R), capacitor (C) and battery (V) are connected in
series, a charge Q builds up on the capacitor according to the formula

Q(t) = CV (1 − e−t/RC)

if there is no charge on the capacitor at time t = 0. The problem is to
monitor the charge on the capacitor every 0.1 seconds in order to detect
when it reaches a level of 8 units of charge, given that V = 9, R = 4
and C = 1. Write a program which displays the time and charge every
0.1 seconds until the charge first exceeds 8 units (i.e. the last charge
displayed must exceed 8). Once you have done this, rewrite the program
to display the charge only while it is strictly less than 8 units.

8.15 Adapt your program for the prime number algorithm in Section 8.2 to
find all the prime factors of a given number (even or odd).

CHAPTER 9

MATLAB Graphics

CONTENTS

Basic 2-D
graphs 197
Labels 198
Multiple plots on the
same axes 199
Line styles, markers
and color 200
Axis limits 200
axes and axis?..........201
Multiple plots in a
figure: subplot 202
figure, clf and cla 203
Graphical input 203
Logarithmic plots... 203
Polar plots............ 204
Plotting rapidly
changing
mathematical
functions: fplot..... 205
The Property Editor 206

3-D plots 206
plot3 206
Animated 3-D plots
with comet3 207
Mesh surfaces....... 207
Contour plots 209
Cropping a surface
with NaNs.............. 211
Visualizing vector
fields 211
Visualization of
matrices 212
Rotation of 3-D
graphs 213

Handle Graphics 214
Getting handles 215

THE OBJECTIVE OF THIS CHAPTER IS TO INTRODUCE YOU
TO:

■ MATLAB’s high-level 2-D and 3-D plotting facilities
■ Handle Graphics
■ Editing plots
■ Animation
■ Saving and exporting graphs
■ Color, lighting and the camera

A picture, it is said, is worth a thousand words. MATLAB has a powerful graph-
ics system for presenting and visualizing data, which is reasonably easy to use.
(Most of the figures in this book have been generated by MATLAB.)

This chapter introduces MATLAB’s high-level 2-D and 3-D plotting facilities.
Low-level features, such as Handle Graphics, are discussed later in this chapter.

It should be stressed that the treatment of graphics in this chapter is of ne-
cessity brief, and intended to give you a glimpse of the richness and power of
MATLAB graphics. For the full treatment, you should consult help on the func-
tions mentioned in this chapter, as well as the comprehensive list of graphics
functions in Help document which you open up by clicking the ‘?’ and typing
graphics in the search tool.

9.1 BASIC 2-D GRAPHS

Graphs (in 2-D) are drawn with the plot statement. In its simplest form, it
takes a single vector argument as in plot(y). In this case the elements of y are
plotted against their indexes, e.g., plot(rand(1, 20)) plots 20 random num-
bers against the integers 1–20, joining successive points with straight lines, as
in Fig. 9.1. If y is a matrix, its columns are plotted against element indexes.

Axes are automatically scaled and drawn to include the minimum and maxi-
mum data points.

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00015-4
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

197

https://doi.org/10.1016/B978-0-08-102997-8.00015-4

198 CHAPTER 9: MATLAB Graphics

FIGURE 9.1
Examples of plot.

Graphics object
properties and how
to change them 216
A vector of handles. 218
Graphics object
creation functions .. 218
Parenting 219
Positioning figures . 219

Editing plots..... 220
Plot edit mode 220
Property Editor 221

Animation........ 222
Animation with
Handle Graphics 223

Color etc. 225
Colormaps............ 225
Color of surface
plots 227
Truecolor 228

Lighting and
camera 229
Saving, printing
and exporting
graphs 230
Saving and opening
figure files 230
Printing a graph 230
Exporting a graph .. 230

Summary 231
Exercises 232

Probably the most common form of plot is plot(x, y) where x and y are
vectors of the same length, e.g.,

x = 0:pi/40:4*pi;
plot(x, sin(x))

In this case, the co-ordinates of the ith point are xi , yi . This form of plot has
been used widely in earlier chapters.

Straight-line graphs are drawn by giving the x and y co-ordinates of the end-
points in two vectors. For example, to draw a line between the point with
cartesian co-ordinates (0, 1) and (4, 3) use the statement

plot([0 4], [1 3])

i.e., [0 4] contains the x co-ordinates of the two points, and [1 3] contains
their y co-ordinates.

MATLAB has a set of ‘easy-to-use’ plotting commands, all starting with the
string ‘ez’. The easy-to-use form of plot is ezplot, e.g.,

ezplot(’tan(x)’)

Exercises
1. Draw lines joining the following points: (0, 1), (4, 3), (2, 0) and (5,−2).
2. See if you can draw a ‘house’ similar to the one depicted in Fig. 9.1.

9.1.1 Labels

Graphs may be labeled with the following statements:

gtext(’text’)

writes a string (’text’) in the graph window. gtext puts a cross-hair in
the graph window and waits for a mouse button or keyboard key to be

9.1 Basic 2-D graphs 199

pressed. The cross-hair can be positioned with the mouse or the arrow
keys. For example,

gtext(’X marks the spot’)

Go on—try it!
Text may also be placed on a graph interactively with Tools -> Edit Plot
from the figure window.

grid

adds/removes grid lines to/from the current graph. The grid state may be
toggled.

text(x, y, ’text’)

writes text in the graphics window at the point specified by x and y.
If x and y are vectors, the text is written at each point. If the text is an
indexed list, successive points are labeled with corresponding rows of the
text.

title(’text’)

writes the text as a title on top of the graph.

xlabel(’horizontal’)

labels the x-axis.

ylabel(’vertical’)

labels the y-axis.

9.1.2 Multiple plots on the same axes

There are at least three ways of drawing multiple plots on the same set of axes
(which may however be rescaled if the new data falls outside the range of the
previous data).

1. The easiest way is simply to use hold to keep the current plot on the axes.
All subsequent plots are added to the axes until hold is released, either
with hold off, or just hold, which toggles the hold state.

2. The second way is to use plot with multiple arguments, e.g.,

plot(x1, y1, x2, y2, x3, y3, ...)

plots the (vector) pairs (x1, y1), (x2, y2), etc. The advantage of this
method is that the vector pairs may have different lengths. MATLAB au-
tomatically selects a different color for each pair.
If you are plotting two graphs on the same axes you may find plotyy
useful—it allows you to have independent y-axis labels on the left and
the right, e.g.,

plotyy(x,sin(x), x, 10*cos(x))

(for x suitably defined).

200 CHAPTER 9: MATLAB Graphics

3. The third way is to use the form

plot(x, y)

where x and y may both be matrices, or where one may be a vector and
one a matrix.
If one of x or y is a matrix and the other is a vector, the rows or columns
of the matrix are plotted against the vector, using a different color for
each. Rows or columns of the matrix are selected depending on which
have the same number of elements as the vector. If the matrix is square,
columns are used.
If x and y are both matrices of the same size, the columns of x are plotted
against the columns of y.
If x is not specified, as in plot(y), where y is a matrix, the columns of y
are plotted against the row index.

9.1.3 Line styles, markers and color

Line styles, markers and colors may be selected for a graph with a string argu-
ment to plot, e.g.,

plot(x, y, ’--’)

joins the plotted points with dashed lines, whereas

plot(x, y, ’o’)

draws circles at the data points with no lines joining them. You can specify all
three properties, e.g.,

plot(x,sin(x), x, cos(x), ’om--’)

plots sin(x) in the default style and color and cos(x) with circles joined with
dashes in magenta. The available colors are denoted by the symbols c, m, y, k,
r, g, b, w. You can have fun trying to figure out what they mean, or you can use
help plot to see the full range of possible symbols.

9.1.4 Axis limits

Whenever you draw a graph with MATLAB it automatically scales the axis limits
to fit the data. You can override this with

axis([xmin, xmax, ymin, ymax])

which sets the scaling on the current plot, i.e., draw the graph first, then reset
the axis limits.

9.1 Basic 2-D graphs 201

If you want to specify one of the minimum or maximum of a set of axis limits,
but want MATLAB to autoscale the other, use Inf or -Inf for the autoscaled
limit.

You can return to the default of automatic axis scaling with

axis auto

The statement

v = axis

returns the current axis scaling in the vector v.

Scaling is frozen at the current limits with

axis manual

so that if hold is turned on, subsequent plots will use the same limits.

If you draw a circle, e.g., with the statements

x = 0:pi/40:2*pi;
plot(sin(x), cos(x))

the circle probably won’t appear round, especially if you resize the figure win-
dow. The command

axis equal

makes unit increments along the x- and y-axis the same physical length on
the monitor, so that circles always appear round. The effect is undone with
axis normal.

You can turn axis labeling and tick marks off with axis off, and back on again
with axis on.

axes and axis?

You and I might be forgiven for thinking that the word ‘axes’ denotes the plural
of ‘axis’, which it does indeed in common English usage. However, in MATLAB
the word ‘axes’ refers to a particular graphics object, which includes not only the
x-axis and y-axis and their tick marks and labels, but also everything drawn on
those particular axes: the actual graphs and any text included in the figure. Axes
objects are discussed in more detail later in this chapter.

202 CHAPTER 9: MATLAB Graphics

FIGURE 9.2
Four subplots: rotations of a 3-D surface.

9.1.5 Multiple plots in a figure: subplot

You can show a number of plots in the same figure window with the subplot
function. It looks a little curious at first, but it’s quite easy to get the hang of it.
The statement

subplot(m, n, p)

divides the figure window into m × n small sets of axes, and selects the pth
set for the current plot (numbered by row from the left of the top row). For
example, the following statements produce the four plots shown in Fig. 9.2
(details of 3-D plotting are discussed in Section 9.2).

[x, y] = meshgrid(-3:0.3:3);
z = x .* exp(-x.^2 - y.^2);
subplot(2,2,1)
mesh(z),title(’subplot(2,2,1)’)
subplot(2,2,2)
mesh(z)
view(-37.5,70),title(’subplot(2,2,2)’)
subplot(2,2,3)
mesh(z)
view(37.5,-10),title(’subplot(2,2,3)’)
subplot(2,2,4)
mesh(z)
view(0,0),title(’subplot(2,2,4)’)

The command subplot(1,1,1) goes back to a single set of axes in the figure.

9.1 Basic 2-D graphs 203

9.1.6 figure, clf and cla

figure(h), where h is an integer, creates a new figure window, or makes figure
h the current figure. Subsequent plots are drawn in the current figure. h is called
the handle of the figure. Handle Graphics is discussed further in a later section
of this chapter.

clf clears the current figure window. It also resets all properties associated with
the axes, such as the hold state and the axis state.

cla deletes all plots and text from the current axes, i.e., leaves only the x- and
y-axes and their associated information.

9.1.7 Graphical input

The command

[x, y] = ginput

allows you to select an unlimited number of points from the current graph us-
ing a mouse or arrow keys. A movable cross-hair appears on the graph. Clicking
saves its co-ordinates in x(i) and y(i). Pressing Enter terminates the input. An
example is provided in the last chapter of this book which involves selecting
points in a figure and fitting a curve to them.

The command

[x, y] = ginput(n)

works like ginput except that you must select exactly n points.

See help for further information.

9.1.8 Logarithmic plots

The command

semilogy(x, y)

plots y with a log10 scale and x with a linear scale. For example, the statements

x = 0:0.01:4;
semilogy(x, exp(x)), grid

produce the graph in Fig. 9.3. Equal increments along the y-axis represent mul-
tiples of powers of 10. So, starting from the bottom, the grid lines are drawn

204 CHAPTER 9: MATLAB Graphics

FIGURE 9.3
A logarithmic plot.

at 1, 2, 3, . . . , 10, 20, 30, . . . , 100, Incidentally, the graph of ex on these axes
is a straight line, because the equation y = ex transforms into a linear equation
when you take logs of both sides.

See also semilogx and loglog.

Note that x and y may be vectors and/or matrices, just as in plot.

Exercise

Draw graphs of x2, x3, x4 and ex2
over the interval 0 ≤ x ≤ 4, using semilogy.

9.1.9 Polar plots

The point (x, y) in cartesian co-ordinates is represented by the point (θ, r) in
polar co-ordinates, where

x = r cos(θ),

y = r sin(θ),

and θ varies between 0 and 2π radians (360◦).

The command

polar(theta, r)

generates a polar plot of the points with angles in theta and magnitudes in r.

9.1 Basic 2-D graphs 205

FIGURE 9.4
Polar plot of θ against sin(2θ).

As an example, the statements

x = 0:pi/40:2*pi;
polar(x, sin(2*x)),grid

produce the plot shown in Fig. 9.4.

9.1.10 Plotting rapidly changing mathematical functions:
fplot

In all the graphing examples so far, the x co-ordinates of the points plotted
have been incremented uniformly, e.g., x = 0:0.01:4. If the function being
plotted changes very rapidly in some places, this can be inefficient, and can
even give a misleading graph.

For example, the statements

x = 0.01:0.001:0.1;
plot(x, sin(1./x))

produce the graph shown in Fig. 9.5A. But if the x increments are reduced to
0.0001, we get the graph in Fig. 9.5B instead. For x < 0.04, the two graphs look
quite different.

MATLAB has a function called fplot which uses a more elegant approach.
Whereas the above method evaluates sin(1/x) at equally spaced intervals, fplot
evaluates it more frequently over regions where it changes more rapidly. Here’s
how to use it:

fplot(’sin(1/x)’, [0.01 0.1]) % no, 1./x not needed!

206 CHAPTER 9: MATLAB Graphics

FIGURE 9.5
y = sin(1/x).

9.1.11 The Property Editor

The most general way of editing a graph is by using the Property Editor, e.g.,
Edit -> Figure Properties from the figure window. This topic is discussed
briefly towards the end of this chapter.

9.2 3-D PLOTS

MATLAB has a variety of functions for displaying and visualizing data in 3-D,
either as lines in 3-D, or as various types of surfaces. This section provides a
brief overview.

9.2.1 plot3

The function plot3 is the 3-D version of plot. The command

plot3(x, y, z)

draws a 2-D projection of a line in 3-D through the points whose co-ordinates
are the elements of the vectors x, y and z. For example, the command

plot3(rand(1,10), rand(1,10), rand(1,10))

generates 10 random points in 3-D space, and joins them with lines, as shown
in Fig. 9.6A.

As another example, the statements

t = 0:pi/50:10*pi;
plot3(exp(-0.02*t).*sin(t), exp(-0.02*t).*cos(t),t), ...
xlabel(’x-axis’), ylabel(’y-axis’), zlabel(’z-axis’)

produce the inwardly spiraling helix shown in Fig. 9.6B. Note the orientation
of the x-, y- and z-axes, and in particular that the z-axis may be labeled with
zlabel.

9.2 3-D plots 207

FIGURE 9.6
Examples of plot3.

9.2.2 Animated 3-D plots with comet3

The function comet3 is similar to plot3 except that it draws with a moving
‘comet head’. Use comet3 to animate the helix in Fig. 9.6B. No prizes for guess-
ing the name of the 2-D version.

9.2.3 Mesh surfaces

In Chapter 1 we saw how to draw the Mexican hat (Fig. 1.12):

[x y] = meshgrid(-8 : 0.5 : 8);

r = sqrt(x.^2 + y.^2) + eps;

z = sin(r) ./ r;

This drawing is an example of a mesh surface.

To see how such surface is drawn, let’s take a simpler example, say z = x2 − y2.
The surface we are after is the one generated by the values of z as we move
around the x-y plane. Let’s restrict ourselves to part of the first quadrant of this
plane, given by

0 ≤ x ≤ 5, 0 ≤ y ≤ 5.

The first step is to set up the grid in the x-y plane over which the surface is to
be plotted. You can use the MATLAB function meshgrid to do it, as follows:

[x y] = meshgrid(0:5);

This statement sets up two matrices, x and y. (Functions, such as meshgrid,
which return more than one ‘output argument’, are discussed in detail in Chap-
ter 10. However, you don’t need to know the details in order to be able to use
it here.)

208 CHAPTER 9: MATLAB Graphics

The two matrices in this example are:

x =
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5

y =
0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5

The effect of this is that the columns of the matrix x as it is displayed hold the
x co-ordinates of the points in the grid, while the rows of the display of y hold
the y co-ordinates. Recalling the way MATLAB array operations are defined,
element by element, this means that the statement

z = x.^2 - y.^2

will correctly generate the surface points:

z =
0 1 4 9 16 25

-1 0 3 8 15 24
-4 -3 0 5 12 21
-9 -8 -5 0 7 16

-16 -15 -12 -7 0 9
-25 -24 -21 -16 -9 0

For example, at the grid point (5, 2), z has the value 52 − 22 = 21. Incidentally,
you don’t need to worry about the exact relationship between grid co-ordinates
and matrix subscripts; this is taken care of by meshgrid.

The statement mesh(z) then plots the surface (Fig. 9.7), with mesh lines con-
necting the points in the surface that lie above grid points.

Note that mesh(z) shows the row and column indices (subscripts) of the matrix
z on the x and y axes. If you want to see proper values on the x and y axes use
mesh(x,y,z). This applies to many of the other 3-D plotting functions.

9.2 3-D plots 209

FIGURE 9.7
The surface z = x2 − y2.

The function mesh draws a surface as a ‘wire frame’. An alternative visualization
is provided by surf, which generates a faceted view of the surface (in color),
i.e. the wire frame is covered with small tiles.

See help for variations on mesh and surf.

Exercises
1. Draw the surface shown in Fig. 9.7 with a finer mesh (of 0.25 units in each
direction), using

[x y] = meshgrid(0:0.25:5);

(the number of mesh points in each direction is 21).
2. The initial heat distribution over a steel plate is given by the function

u(x, y) = 80y2e−x2−0.3y2
.

Plot the surface u over the grid defined by

−2.1 ≤ x ≤ 2.1, − 6 ≤ y ≤ 6,

where the grid width is 0.15 in both directions. You should get the plot shown
in Fig. 9.8.

9.2.4 Contour plots

If you managed to draw the plot in Fig. 9.8, try the command

contour(u)

210 CHAPTER 9: MATLAB Graphics

FIGURE 9.8
Heat distribution over a steel plate.

FIGURE 9.9
Contour plots.

You should get a contour plot of the heat distribution, as shown in Fig. 9.9A, i.e.
the isothermals (lines of equal temperature). Here’s the code:

[x y] = meshgrid(-2.1:0.15:2.1, -6:0.15:6); % x- y-grids different

u = 80 * y.^2 .* exp(-x.^2 - 0.3*y.^2);

contour(u)

The function contour can take a second input variable. It can be a scalar spec-
ifying how many contour levels to plot, or it can be a vector specifying the
values at which to plot the contour levels.

You can get a 3-D contour plot with contour3, as shown in Fig. 9.9B.

Contour levels may be labeled with clabel (see help).

A 3-D contour plot may be drawn under a surface with meshc or surfc. For
example, the statements

9.2 3-D plots 211

FIGURE 9.10
(A) meshc; (B) cropping a surface.

[x y] = meshgrid(-2:.2:2);

z = x .* exp(-x.^2 - y.^2);

meshc(z)

produce the graph in Fig. 9.10A.

9.2.5 Cropping a surface with NaNs

If a matrix for a surface plot contains NaNs, these elements are not plotted. This
enables you to cut away (crop) parts of a surface. For example, the statements

[x y] = meshgrid(-2:.2:2, -2:.2:2);

z = x .* exp(-x.^2 - y.^2);

c = z; % preserve the original surface

c(1:11,1:21) = NaN*c(1:11,1:21);

mesh(c), xlabel(’x-axis’), ylabel(’y-axis’)

produce the graph in Fig. 9.10B.

9.2.6 Visualizing vector fields

The function quiver draws little arrows to indicate a gradient or other vec-
tor field. Although it produces a 2-D plot, it’s often used in conjunction with
contour, which is why it’s described briefly here.

As an example, consider the scalar function of two variables V = x2 + y. The
gradient of V is defined as the vector field

∇V =
(

∂V

∂x
,
∂V

∂y

)

= (2x,1).

The following statements draw arrows indicating the direction of ∇V at points
in the x-y plane (see Fig. 9.11):

212 CHAPTER 9: MATLAB Graphics

FIGURE 9.11
Gradients and level surfaces.

[x y] = meshgrid(-2:.2:2, -2:.2:2);

V = x.^2 + y;

dx = 2*x;

dy = dx; % dy same size as dx

dy(:,:) = 1; % now dy is same size as dx but all 1’s

contour(x, y, V), hold on

quiver(x, y, dx, dy), hold off

The ‘contour’ lines indicate families of level surfaces; the gradient at any point is
perpendicular to the level surface which passes through that point. The vectors
x and y are needed in the call to contour to specify the axes for the contour
plot.

An additional optional argument for quiver specifies the length of the arrows.
See help.

If you can’t (or don’t want to) differentiate V , you can use the gradient func-
tion to estimate the derivative:

[dx dy] = gradient(V, 0.2, 0.2);

The values 0.2 are the increments in the x and y directions used in the approx-
imation.

9.2.7 Visualization of matrices

The mesh function can also be used to ‘visualize’ a matrix. The following state-
ments generate the plot in Fig. 9.12:

9.2 3-D plots 213

FIGURE 9.12
Visualization of a matrix.

a = zeros(30,30);

a(:,15) = 0.2*ones(30,1);

a(7,:) = 0.1*ones(1,30);

a(15,15) = 1;

mesh(a)

The matrix a is 30 × 30. The element in the middle—a(15,15)—is 1, all the
elements in row 7 are 0.1, and all the remaining elements in column 15 are
0.2. mesh(a) then interprets the rows and columns of a as an x-y co-ordinate
grid, with the values a(i,j) forming the mesh surface above the points (i, j).

The function spy is useful for visualizing sparse matrices.

9.2.8 Rotation of 3-D graphs

The view function enables you to specify the angle from which you view a 3-D
graph. To see it in operation, run the following program, which rotates the
visualized matrix in Fig. 9.12:

a = zeros(30,30);

a(:,15) = 0.2*ones(30,1);

a(7,:) = 0.1*ones(1,30);

a(15,15) = 1;

el = 30;

for az = -37.5:15:-37.5+360

mesh(a), view(az, el)

pause(0.5)

end

214 CHAPTER 9: MATLAB Graphics

The function view takes two arguments. The first one, az in this example, is
called the azimuth or polar angle in the x-y plane (in degrees). az rotates
the viewpoint (you) about the z-axis—i.e. about the ‘pinnacle’ at (15,15) in
Fig. 9.12—in a counter-clockwise direction. The default value of az is −37.5◦.
The program therefore rotates you in a counter-clockwise direction about the
z-axis in 15◦ steps starting at the default position.

The second argument of view is the vertical elevation el (in degrees). This is
the angle a line from the viewpoint makes with the x-y plane. A value of 90◦
for el means you are directly overhead. Positive values of the elevation mean
you are above the x-y plane; negative values mean you are below it. The default
value of el is 30◦.

The command pause(n) suspends execution for n seconds.

You can rotate a 3-D figure interactively as follows. Click the Rotate 3-D button
in the figure toolbar (first button from the right). Click on the axes and an
outline of the figure appears to help you visualize the rotation. Drag the mouse
in the direction you want to rotate. When you release the mouse button the
rotated figure is redrawn.

Exercise
Rewrite the above program to change the elevation gradually, keeping the azimuth
fixed at its default.

9.3 HANDLE GRAPHICS

The richness and power of MATLAB graphics is made possible by its Handle
Graphics objects. There is a very helpful section devoted to Handle Graphics in
the online documentation MATLAB Help: Graphics. What follows is of neces-
sity a brief summary of its main features.

Handle Graphics objects are the basic elements used in MATLAB graphics.
The objects are arranged in a parent-child inheritance structure as shown in
Fig. 9.13. For example, Line and Text objects are children of Axes objects. This
is probably the most common parent-child relationship. Axes objects define
a region in a figure window and orient their children within this region. The
actual plots in an Axes object are Line objects. The axis labels and any text
annotations are Text objects. It is important to be aware of this parent-child
hierarchy when you want to manipulate graphics objects using their handles.

Well, what exactly is the handle of a graphics object? Whenever MATLAB cre-
ates a graphics object it automatically creates a handle to that object. You can
get the handle of the object using a function that explicitly returns the handle
of a graphics object, or you can create the handle explicitly when you draw the
graphics object. The handle itself has a floating point representation, but its

9.3 Handle Graphics 215

FIGURE 9.13
Parent-child relationships of Handle Graphics objects (from top to bottom).

actual value need not concern you. What is more important is to save its name
and then to use the handle to change or manipulate your graphics object.

The root object is the only object whose handle is 0. There is only one root
object, created by MATLAB at startup. All other objects are its descendants, as
you can see in Fig. 9.13.

9.3.1 Getting handles

Here’s how to get handles:

■ The functions that draw graphics objects can also be used to return the
handle of the object drawn, e.g.,

x = 0:pi/20:2*pi;
hsin = plot(x, sin(x))
hold on
hx = xlabel(’x’)

hsin is the handle of the Line object (the sine graph), and hx is the handle
of the Text object (the x axis label) in the current Axes object.
The command

figure(h)

where h is an integer, creates a new figure, or makes figure h the current
figure. h is the handle of the figure object.

■ There are three functions that return the handle of particular graphics
objects:

gcf gets the handle of the current figure, e.g.,

hf = gcf;

gca gets the handle of the current axes.

216 CHAPTER 9: MATLAB Graphics

gco gets the handle of the current graphics object, which is the last
graphics object created or clicked on. For example, draw the sine
graph above and get its handle hsin. Click on the graph in the figure
window. Then enter the command

ho = gco

in the Command Window. ho should be set to the handle of the sine
graph (it should have the same numeric value as hsin).

9.3.2 Graphics object properties and how to change them

Once you have the handle of a graphics object you can use it to change the
properties of that object. As an example, draw a sine graph and get its handle,
as demonstrated above:

x = 0:pi/20:2*pi;
hsin = plot(x, sin(x))

Now suppose you want to make the graph much thicker. Enter the following
command:

set(hsin, ’linewidth’, 4);

You should get a nice fat sine curve!

linewidth is just one of the many properties of our graphics object. To see all
the property names of an object and their current values use get(h) where h is
the object’s handle. In the case of our sine graph:

get(hsin)
Color = [0 0 1]
EraseMode = normal
LineStyle = -
LineWidth = [4]
Marker = none
MarkerSize = [6]
MarkerEdgeColor = auto
MarkerFaceColor = none
XData = [(1 by 41) double array]
YData = [(1 by 41) double array]
ZData = []

BeingDeleted = off
ButtonDownFcn =

9.3 Handle Graphics 217

Children = []
Clipping = on
CreateFcn =
DeleteFcn =
BusyAction = queue
HandleVisibility = on
HitTest = on
Interruptible = on
Parent = [100.001]
Selected = off
SelectionHighlight = on
Tag =
Type = line
UIContextMenu = []
UserData = []
Visible = on

You can change any property value with the set function:

set(handle, ‘PropertyName’, PropertyValue)

The command set(handle) lists all the possible property values (where appro-
priate).

You can get an object’s handle and change its properties all in the same breath.
For example,

set(gcf, ’visible’, ’off’)

makes the current figure invisible (without closing it—i.e., it’s still ‘there’). No
prizes for guessing how to make it visible again . . .

Property names are not case-sensitive, and you can abbreviate them to as few
letters as make them unique. For example, you can abbreviate the type property
to ty:

get(hsin,’ty’)
ans =
line

(helpful if you don’t know what type of objects you are dealing with!).

The different types of graphics objects don’t all have the same set of properties,
although there are some properties which are common to all graphics objects,
such as children, parent, type, etc.

218 CHAPTER 9: MATLAB Graphics

9.3.3 A vector of handles

If a graphics object has a number of children the get command used with the
children property returns a vector of the children’s handles. Sorting out the
handles is then quite fun, and demonstrates why you need to be aware of the
parent-child relationships!

As an example, plot a continuous sine graph and an exponentially decaying
sine graph marked with o’s in the same figure:

x = 0:pi/20:4*pi;
plot(x, sin(x))
hold on
plot(x, exp(-0.1*x).*sin(x), ’o’)
hold off

Now enter the command

hkids = get(gca,’child’)

You will see that a vector of handles with two elements is returned. The ques-
tion is, which handle belongs to which plot? The answer is that the handles of
children of the axes are returned in the reverse order in which they are created, i.e.,
hkids(1) is the handle of the exponentially decaying graph, while hkids(2) is
the handle of the sine graph. So now let’s change the markers on the decaying
graph, and make the sine graph much bolder:

set(hkids(1), ’marker’, ’*’)
set(hkids(2), ’linew’, 4)

You should get the plots shown in Fig. 9.14.

If you are desperate and don’t know the handles of any of your graphics objects
you can use the findobj function to get the handle of an object with a property
value that uniquely identifies it. In the original version of the plots in Fig. 9.14
the decaying plot can be identified by its marker property:

hdecay = findobj(’marker’, ’o’)

9.3.4 Graphics object creation functions

Each of the graphics objects shown in Fig. 9.13 (except the root object) has a
corresponding creation function, named after the object it creates. See help for
details.

9.3 Handle Graphics 219

FIGURE 9.14
Result of manipulating a figure using the handles of axes children.

9.3.5 Parenting

By default, all graphics objects are created in the current figure. However, you
can specify the parent of an object when you create it. For example,

axes(’Parent’, figure_handle, ...)

creates an axes in the figure with handle figure_handle. You can also move an
object from one parent to another by redefining its parent property:

set(gca, ’Parent’, figure_handle)

9.3.6 Positioning figures

At startup MATLAB determines the default position and size of the figure win-
dow, according to the size of your computer screen. You can change this by
setting the Position property of the figure object.

Before you tamper with the figure’s Position property you need to know the
dimensions of your screen—this is one of the root object’s properties. For ex-
ample,

get(0, ’screensize’)
ans =

1 1 800 600

i.e., my screen is 800 by 600 pixels. The units of Screensize are pixels by de-
faults. You can (naturally) change the units by setting the root’s Units property.
For example,

220 CHAPTER 9: MATLAB Graphics

set(0, ’units’, ’normalized’)

normalizes the width and height of the screen to 1. This is useful when you are
writing an M-file which is to be run on different computer systems.

Having sorted out the size of your screen, you can then fiddle with the figure
Position property, which is defined as a vector

[left bottom width height]

left and bottom define the position of the first addressable pixel in the lower
left corner of the window, specified with respect to the lower left corner of the
screen. width and height define the size of the interior of the window (exclud-
ing the window border).

You can normalize the figure’s Unit property as well as the root’s Unit property.
You can then position figures absolutely, without reference to variations in
screen size. For example, the following code normalizes units and creates two
figures in the upper half of the screen:

set(0, ’units’, ’normalized’)
h1 = figure(’units’, ’normalized’, ’visible’, ’off’)
h2 = figure(’units’, ’normalized’, ’visible’, ’off’)
set(h1, ’position’, [0.05 0.5 0.45 0.35], ’visible’, ’on’)
set(h2, ’position’, [0.53 0.5 0.45 0.35], ’visible’, ’on’)

Note that the Visible property is first set to off to avoid the figures being
drawn in the default position when they are created. They are only drawn when
their positions have been redefined. Alternatively you can do everything when
the figures are created:

h1 = figure(’un’, ’normalized’, ’pos’, [0.05 0.5 0.45 0.35])

9.4 EDITING PLOTS

There are a number of ways of editing plots.

9.4.1 Plot edit mode

To see how this works draw a graph, e.g., the friendly old sine. There are several
ways to activate plot edit mode:

■ Select Tools -> Edit Plot in the figure window.
■ Click on the Edit Plot selection button in the figure window toolbar (ar-

row pointing roughly north-west).
■ Run the plotedit command in the Command Window.

9.4 Editing plots 221

When a figure is in plot edit mode the toolbar selection button is highlighted.
Once you are in plot edit mode select an object by clicking on it. Selection
handles will appear on the selected object.

As an exercise, get the sine graph into plot edit mode and try the follow-
ing:

■ Select the graph (click on it). Selection handles should appear.
■ Right click on the selected object (the graph). A context menu ap-

pears.
■ Use the context menu to change the graph’s line style and color.
■ Use the Insert menu to insert a legend (although this makes more sense

where you have multiple plots in the figure).
■ Insert a text box inside the figure close to the graph as follows. Click on

the Insert Text selection button in the toolbar (the capital A). The cursor
changes shape to indicate that it is in text insertion mode. Move the in-
sertion point until it touches the graph somewhere and click. A text box
appears. Enter some text in it.

■ Having labeled the graph you can change the format of the labels. Select
the label and right-click. Change the font size and font style.

■ Play around with the Insert Arrow and Insert Line selection buttons on
the toolbar to see if you can insert lines and arrows on the graph.

To exit plot edit mode, click the selection button or uncheck the Edit Plot
option on the Tools menu.

9.4.2 Property Editor

The Property Editor is more general than plot edit mode. It enables you to
change object properties interactively, rather than with the set function. It is
ideal for preparing presentation graphics.

There are numerous ways of starting the Property Editor (you may already have
stumbled onto some):

■ If plot edit mode is enabled you can:
■ Double-click on an object.
■ Right-click on an object and select Properties from the context menu.

■ Select Figure Properties, Axes Properties or Current Object Properties
from the figure Edit menu.

■ Run the propedit command on the command line.

To experiment with the Property Editor it will be useful to have multiple plots
in a figure:

222 CHAPTER 9: MATLAB Graphics

x = 0:pi/20:2*pi;
hsin = plot(x,sin(x))
hold on
hcos = plot(x,cos(x))
hold off

Start the Property Editor and work through the following exercises:

■ The navigation bar at the top of the Property Editor (labeled Edit Prop-
erties for:) identifies the object being edited. Click on the down arrow at
the right of the navigation bar to see all the objects in the figure. You will
notice that there are two line objects. Immediately we are faced with the
problem of identifying the two line objects in our figure. The answer is to
give each of them tags by setting their Tag properties.
Go back to the figure and select the sine graph. Back in the Property Ed-
itor the navigation bar indicates you are editing one of the line objects.
You will see three tabs below the navigation bar: Data, Style and Info.
Click the Info tab, and enter a label in the Tag box, e.g., sine. Press En-
ter. The tag sine immediately appears next to the selected line object in
the navigation bar.
Give the cosine graph a tag as well (start by selecting the other line ob-
ject).

■ Select the sine graph. This time select the Style tab and go berserk chang-
ing its color, line style, line width and markers.

■ Now select the axes object. Use the Labels tab to insert some axis labels.
Use the Scale tab to change the y axis limits, for example.
Note that if you were editing a 3-D plot you would be able to use the
Viewpoint tab to change the viewing angle and to set various camera
properties.

Have fun!

9.5 ANIMATION

There are three facilities for animation in MATLAB:

■ The comet and comet3 functions can be used to draw comet plots, as we
mentioned briefly in Chapter 7.

■ The getframe function may be used to generate ‘movie frames’ from a
sequence of graphs. The movie function can then be used to play back the
movie a specified number of times.
The MATLAB online documentation has the following script in MATLAB
Help: Graphics: Creating Specialized Plots: Animation. It generates 16
frames from the Fast Fourier Transforms of complex matrices:

9.5 Animation 223

for k = 1:16
plot(fft(eye(k+16)))
axis equal
M(k) = getframe;

end

Now play it back, say five times:

movie(M, 5)

You can specify the speed of the playback, among other things. See help.
■ The most versatile (and satisfying) way of creating animations is by using

the Handle Graphics facilities. Two examples follow.

9.5.1 Animation with Handle Graphics

For starters, run the following script, which should show the marker o tracing
out a sine curve, leaving a trail behind it:

% animated sine graph

x = 0;

y = 0;

dx = pi/40;

p = plot(x, y, ’o’, ’EraseMode’, ’none’); % ’xor’ shows only current point

% ’ none’ shows all points

axis([0 20*pi -2 2])

for x = dx:dx:20*pi;

x = x + dx;

y = sin(x);

set(p, ’XData’, x, ’YData’, y)

drawnow

end

Note:

■ The statement

p = plot(x, y, ’o’, ’EraseMode’, ’none’);

achieves a number of things. It plots the first point of the graph. It saves
the handle p of the plot for further reference. And it specifies that the
Erasemode property is none, i.e., the object must not be erased when it is
drawn again. To achieve complete animation, set this property to xor—try
it now. Then the object is erased each time it is redrawn (in a slightly
different position), creating the classic animation effect.

224 CHAPTER 9: MATLAB Graphics

■ The statement

set(p, ’XData’, x, ’YData’, y)

sets the x and y data values of the object p to the new values generated
in the for loop, and ‘redraws’ the object. However, it is not drawn on the
screen immediately—it joins the ‘event queue’, where it waits until it is
flushed out.

■ Finally, the drawnow function flushes the event queue and draws the object
on the screen so that we can see the fruit of our labors.
As help drawnow will reveal, there are four events that flush the event
queue:
■ a return to the MATLAB prompt—this is how you have seen all the

graphs you’ve drawn up to now;
■ hitting a pause statement;
■ executing a getframe command;
■ executing a drawnow command.
For example, you could make the marker move in a more stately fashion
by replacing drawnow with pause(0.05)—that’s 0.05 seconds.

The next example is based on one in the Animation section of the MATLAB
documentation. It involves chaotic motion described by a system of three non-
linear differential equations having a ‘strange attractor’ (known as the Lorenz
strange attractor). The system can be written as

dy

dt
= Ay,

where y(t) is a vector with three components, and A is a matrix depending
on y:

A(y) =
⎡
⎣ −8/3 0 y(2)

0 −10 10
−y(2) 28 −1

⎤
⎦ .

The following script solves the system approximately using Euler’s method
(a more accurate numerical solution is discussed in Chapter 17), and shows the
solution orbiting about two different attractors without settling into a steady
orbit about either. Fig. 9.15 shows the situation after a few thousand points
have been plotted.

A = [-8/3 0 0; 0 -10 10; 0 28 -1];
y = [35 -10 -7]’;
h = 0.01;
p = plot3(y(1), y(2), y(3), ’o’, ...

’erasemode’, ’none’, ’markersize’, 2);

9.6 Color etc. 225

FIGURE 9.15
The Lorenz strange attractor.

axis([0 50 -25 25 -25 25])
hold on
i = 1;

while 1
A(1,3) = y(2);
A(3,1) = -y(2);
ydot = A*y;
y = y + h*ydot;
% Change color occasionally
if rem(i,500) == 0

set(p, ’color’, [rand, rand, rand])
end
% Change co-ordinates
set(p, ’XData’, y(1), ’YData’, y(2), ’ZData’, y(3))
drawnow
i=i+1;

end

If all the points are all plotted in the same color you eventually wouldn’t be
able to see the new points generated: a large area of the screen would be filled
with the drawing color. The color is therefore set randomly after every 500
points are plotted.

9.6 COLOR ETC.

9.6.1 Colormaps

MATLAB graphics can generate a rich variety of colors. You may be wondering
how.

226 CHAPTER 9: MATLAB Graphics

The following script shows a view of the Earth from space:

load earth
image(X); colormap(map)
axis image

(axis image is the same as axis equal except that the plot box fits tightly
around the data). For a variation use hot as the argument of colormap instead
of map.

The matrix X loaded from earth is 257-by-250. Each of the elements of X is
an integer in the range 1–64. For example, here is a 3-by-3 submatrix of X
(somewhere in north-east Africa):

X(39:41,100:102)
ans =

14 15 14
10 16 10
10 10 10

The colormap function generates by default a 64-by-3 matrix with elements in
the range 0–1. The values in the three columns represent the intensities of the
red, green and blue (RGB) video components respectively. Each row of this
matrix therefore defines a particular color by specifying its RGB components.
The image function maps each element of its argument to a row in the col-
ormap to find the color of that element. For example, X(40,101) has the value
16. Row 16 of the colormap has the three values

0.6784 0.3216 0.1922

(reddish) as you can easily verify with the statements

cm = colormap(map);
cm(16,:)

(The map colormap is also loaded from earth.) These values of RGB specify
the color of the pixel 40 from the top and 101 from the left in the figure.
Incidentally, you can use the statement

[xp yp] = ginput

to get the co-ordinates of a point in the figure (cross-hairs appears in the figure;
click on the point whose co-ordinates you want). Clicking on the point in
north-east Africa results in

9.6 Color etc. 227

xp =
101.8289 % from the left (column of X)

yp =
40.7032 % from the top (row of X)

Note that xp and yp correspond to the columns and rows of X respectively (imag-
ine the matrix X superimposed on the figure).

There are a number of functions provided by MATLAB which generate col-
ormaps, e.g., jet (the default), bone, flag, prism. See help graph3d for a com-
plete list.

You can sample the various colormaps quite nicely with the following state-
ment, which shows 64 vertical strips, each in a different color:

image(1:64),colormap(prism)

Or why not generate some random colors?

randmap(:,1) = rand(64,1);
randmap(:,2) = rand(64,1);
randmap(:,3) = rand(64,1);
image(1:64);colormap(randmap)

The function colorbar displays the current colormap vertically or horizontally
in the figure with your graph, indicating how the 64 colors are mapped. Try it
with the image of the Earth.

Note that 64 is the default length of a colormap. The functions that generate
colormaps have an optional parameter specifying the length of the colormap.

9.6.2 Color of surface plots

When you draw a surface plot with a single matrix argument, e.g., surf(z), the
argument z specifies both the height of the surface and the color. As an example
use the function peaks which generates a surface with a couple of peaks and
valleys:

z = peaks;
surf(z), colormap(jet), colorbar

The colorbar indicates that the minimum element of z (somewhat less than
−6) is mapped to row 1 of the colormap (R = 0, G = 0, B = 0.5625), whereas
the maximum element (about 8) is mapped to row 64 (R = 0.5625, G = 0,
B = 0).

228 CHAPTER 9: MATLAB Graphics

You can specify the color with a second argument the same size as the first:

z = peaks(16); % generates a 16-by-16 mesh
c = rand(16);
surf(z, c), colormap(prism)

Here the surface is tiled with a random pattern of 16-by-16 colors from the
prism colormap.

In this form of surf each element of c is used to determine the color of the
point in the corresponding element of z. By default MATLAB uses a process
called scaled mapping to map from an element of z (or c) to the color in the
colormap. The details of the scaling are determined by the caxis command.
For further details see help caxis or the section Coloring Mesh and Surface
Plots in MATLAB Help: 3-D Visualization: Creating 3-D Graphs.

You can exploit the facility to specify color in order to emphasize properties of
the surface. The following example is given in the MATLAB documentation:

z = peaks(40);
c = del2(z);
surf(z, c)
colormap hot

The function del2 computes the discrete Laplacian of a surface—the Laplacian
is related to the curvature of the surface. Creating a color array from the Lapla-
cian means that regions with similar curvature will be drawn in the same color.
Compare the surface obtained this way with that produced by the statement

surf(P), colormap(hot)

In the second case regions with similar heights about the x-y plane have the
same color.

Alternative forms of surf (and related surface functions) are:

surf(x, y, z) % color determined by z
surf(x, y, z, c) % color determined by c

9.6.3 Truecolor

The technique of coloring by means of a colormap is called indexed coloring—
a surface is colored by assigning each data point an index (row) in the color
map. The Truecolor technique colors a surface using explicitly specified RGB
triplets. Here is another example from the MATLAB documentation (it also
demonstrates the use of a multi-dimensional array):

9.7 Lighting and camera 229

z = peaks(25);
c(:,:,1) = rand(25);
c(:,:,2) = rand(25);
c(:,:,3) = rand(25);
surf(z, c)

The three ‘pages’ of c (indicated by its third subscript) specify the values of RGB
respectively to be used to color the point in z whose subscripts are the same as
the first two subscripts in c. For example, the RGB values for the color of the
point z(5,13) are given by c(5,13,1), c(5,13,2) and c(5,13,3) respectively.

9.7 LIGHTING AND CAMERA

MATLAB uses lighting to add realism to graphics, e.g., illuminating a surface
by shining light on it from a certain angle. Here are two examples from the
MATLAB documentation. Have a look at them.

z = peaks(25);
c(:,:,1) = rand(25);
c(:,:,2) = rand(25);
c(:,:,3) = rand(25);
surf(z,c,’facecolor’,’interp’,’facelighting’,’phong’,...

’edgecolor’,’none’)
camlight right

The possibilities for the facelighting property of the surface object are none,
flat (uniform color across each facet), gouraud or phong. The last two are the
names of lighting algorithms. Phong lighting generally produces better results,
but takes longer to render than Gouraud lighting. Remember that you can see
all a surface object’s properties by creating the object with a handle and using
get on the object’s handle.

This one’s quite stunning:

[x y] = meshgrid(-8 : 0.5 : 8);
r = sqrt(x.^2 + y.^2) + eps;
z = sin(r) ./ r;
surf(x,y,z,’facecolor’,’interp’,’edgecolor’,’none’, ...

’facelighting’,’phong’)
colormap jet
daspect([5 5 1])
axis tight
view(-50, 30)
camlight left

230 CHAPTER 9: MATLAB Graphics

For more information on lighting and the camera see the sections Lighting as
a Visualization Tool and Defining the View in MATLAB Help: 3-D Visualiza-
tion.

9.8 SAVING, PRINTING AND EXPORTING GRAPHS

9.8.1 Saving and opening figure files

You can save a figure generated during a MATLAB session so that you can open
it in a subsequent session. Such a file has the .fig extension.

■ Select Save from the figure window File menu.
■ Make sure the Save as type is .fig.

To open a figure file select Open from the File menu.

9.8.2 Printing a graph

You can print everything inside a figure window frame, including axis labels
and annotations:

■ To print a figure select Print from the figure window File menu.
■ If you have a black and white printer, colored lines and text are ‘dithered

to gray’ which may not print very clearly in some cases. In that case select
Page Setup from the figure File menu. Select the Lines and Text tab and
click on the Black and white option for Convert solid colored lines to:.

9.8.3 Exporting a graph

A figure may be exported in one of a number of graphics formats if you want
to import it into another application, such as a text processor. You can also
export it to the Windows clipboard and paste it from there into an application.

To export to the clipboard:

■ Select Copy Figure from the figure window’s Edit menu (this action
copies to the clipboard).

■ Before you copy to the clipboard you may need to adjust the figure’s
settings. You can do this by selecting Preferences from the figure’s File
menu. This action opens the Preferences panel, from which you can se-
lect Figure Copy Template Preferences and Copy Options Preferences
to adjust the figure’s settings.
You may also have to adjust further settings with Page Setup from the
figure’s File menu.

Summary 231

To export a figure to a file in a specific graphics format:

■ Select Export from the figure’s File menu. This action invokes the Export
dialogue box.

■ Select a graphics format from the Save as type list, e.g., EMF (enhanced
metafiles), JPEG, etc. You may need to experiment to find the best format
for the target application you have in mind.
For example, to insert a figure into a Word document, I find it much easier
first to save it in EMF or JPEG format and then to insert the graphics file
into the Word document, rather than to go the clipboard route (there are
more settings to adjust that way).

For further details consult the section Basic Printing and Exporting in
MATLAB Help: Graphics.

SUMMARY

■ 2-D plots are drawn with the plot statement.
■ There is a set of easy-to-use plotters called ez*.
■ Graphs may be labeled with grid, text, title, xlabel, ylabel, etc.
■ Multiple plots may be drawn on the same axes in a number of ways.
■ Line styles, markers and color may be varied.
■ Axis limits may be set explicitly.
■ In MATLAB the word ‘axes’ refers to the graphics object in which the x

and y axis and their labels, plots and text annotations are drawn.
■ A number of axes may be drawn in the same figure with subplot.
■ Co-ordinates of points in a figure may be selected with ginput.
■ semilogx, semilogy and loglog are used to plot on log10 scales.
■ The polar command plots in polar co-ordinates.
■ fplot provides a handy way of plotting mathematical functions.
■ plot3 draws lines in 3-D.
■ comet3 animates a 3-D plot.
■ A 3-D surface may be plotted with mesh.
■ A 3-D plot may be rotated with view or with the Rotate 3-D tool in the

figure window.
■ mesh may also be used to visualize a matrix.
■ contour and contour3 draws contour levels in 2-D and 3-D respectively.
■ 3-D surfaces may be cropped.
■ For a complete list of graphics functions consult the online Help in

MATLAB Function Reference: Functions by Category: Graphics.
■ MATLAB graphics objects are arranged in a parent-child hierarchy.
■ A handle may be attached to a graphics object at creation; the handle may

be used to manipulate the graphics object.

232 CHAPTER 9: MATLAB Graphics

■ If h is the handle of a graphics object, get(h) returns all the current values
of the object’s properties. set(h) shows you all the possible values of the
properties.

■ The functions gcf, gca and gco return the handles of various graphics
objects.

■ Use set to change the properties of a graphics object.
■ A graph may be edited to a limited extent in plot edit mode, selected

from the figure window (Tools -> Edit Plot). More general editing can
be done with the Property Editor (Edit -> Figure Properties from the
figure window).

■ The most versatile way to create animations is by using the Handle
Graphics facilities. Other techniques involve comet plots and movies.

■ Indexed coloring may be done with colormaps.
■ Graphs saved to .fig files may be opened in subsequent MATLAB ses-

sions.
■ Graphs may be exported to the Windows clipboard, or to files in a variety

of graphics formats.

EXERCISES

9.1 Draw a graph of the population of the USA from 1790 to 2000, using
the (logistic) model

P(t) = 19 72 73 000

1 + e−0.03134(t−1913.25)

where t is the date in years.
Actual data (in 1000s) for every decade from 1790 to 1950 are as fol-
lows: 3929, 5308, 7240, 9638, 12 866, 17 069, 23 192, 31 443, 38 558,
50 156, 62 948, 75 995, 91 972, 1 05 711, 1 22 775, 1 31 669, 1 50 697.
Superimpose this data on the graph of P(t). Plot the data as discrete
circles (i.e. do not join them with lines) as shown in Fig. 9.16.

9.2 The Spiral of Archimedes (Fig. 9.17) may be represented in polar co-
ordinates by the equation

r = aθ,

where a is some constant. (The shells of a class of animals called num-
mulites grow in this way.) Write some command-line statements to
draw the spiral for some values of a.

9.3 Another type of spiral is the logarithmic spiral (Fig. 9.17), which de-
scribes the growth of shells of animals like the periwinkle and the

Exercises 233

FIGURE 9.16
USA population: model and census data (o).

FIGURE 9.17
Spirals.

nautilus. Its equation in polar co-ordinates is

r = aqθ ,

where a > 0, q > 1. Draw this spiral.
9.4 The arrangement of seeds in a sunflower head (and other flowers, like

daisies) follows a fixed mathematical pattern. The nth seed is at position

r = √
n,

with angular co-ordinate πdn/180 radians, where d is the constant an-
gle of divergence (in degrees) between any two successive seeds, i.e. be-
tween the nth and (n+1)th seeds. A perfect sunflower head (Fig. 9.18) is
generated by d = 137.51◦. Write a program to plot the seeds; use a circle
(o) for each seed. A remarkable feature of this model is that the angle d

must be exact to get proper sunflowers. Experiment with some different
values, e.g. 137.45◦ (spokes, from fairly far out), 137.65◦ (spokes all the
way), 137.92◦ (Catherine wheels).

234 CHAPTER 9: MATLAB Graphics

FIGURE 9.18
A perfect sunflower?

9.5 The equation of an ellipse in polar co-ordinates is given by

r = a(1 − e2)/(1 − e cos θ),

where a is the semi-major axis and e is the eccentricity, if one focus is at
the origin, and the semi-major axis lies on the x-axis.
Halley’s Comet, which visited us in 1985/6, moves in an elliptical or-
bit about the Sun (at one focus) with a semi-major axis of 17.9 A.U.
(A.U. stands for Astronomical Unit, which is the mean distance of the
Earth from the Sun: 149.6 million km.) The eccentricity of the orbit is
0.967276. Write a program which draws the orbit of Halley’s Comet
and the Earth (assume the Earth is circular).

9.6 A very interesting iterative relationship that has been studied a lot re-
cently is defined by

yk+1 = ryk(1 − yk)

(this is a discrete form of the well-known logistic model). Given y0 and r ,
successive yk ’s may be computed very easily, e.g. if y0 = 0.2 and r = 1,
then y1 = 0.16, y2 = 0.1334, and so on.
This formula is often used to model population growth in cases where
the growth is not unlimited, but is restricted by shortage of food, living
area, etc.
yk exhibits fascinating behavior, known as mathematical chaos, for values
of r between 3 and 4 (independent of y0). Write a program which plots
yk against k (as individual points).
Values of r that give particularly interesting graphs are 3.3, 3.5, 3.5668,
3.575, 3.5766, 3.738, 3.8287, and many more that can be found by
patient exploration.

Exercises 235

9.7 A rather beautiful fractal picture can be drawn by plotting the points
(xk, yk) generated by the following difference equations

xk+1 = yk(1 + sin 0.7xk) − 1.2
√|xk|,

yk+1 = 0.21 − xk,

starting with x0 = y0 = 0. Write a program to draw the picture (plot
individual points; do not join them).

CHAPTER 10

Vectors as Arrays and Other Data Structures

CONTENTS

Update
processes 237
Unit time steps 238
Non-unit time steps 240
Using a function 242
Exact solution 243

Frequencies,
bar charts and
histograms 244
A random walk 244
Histograms........... 245

Sorting............ 246
Bubble Sort 246
MATLAB’s sort 248

Structures 249
Cell arrays....... 251
Assigning data to
cell arrays 251
Accessing data in
cell arrays 253
Using cell arrays.... 253
Displaying and
visualizing cell
arrays 254

Classes and
objects............ 254
Summary 255

THE OBJECTIVES OF THIS CHAPTER ARE:

■ To enable you to solve problems which involve working carefully with
array subscripts.

■ To introduce you to:
– Structures.
– Cells and cell arrays.

In MATLAB an array is just another name for a vector. So why have a large part
of a chapter on arrays, when we have already been using vectors for most of
the book? It is helpful to talk about arrays (as opposed to vectors) when we
are concerned with handling individual elements by means of their subscripts,
rather than with the vector as a whole. Thus, in the first three sections of this
chapter we look at a number of problems which are best solved by treating
vectors as arrays, usually with the help of for loops.

In the last three sections of this chapter we deal with other, more advanced,
data structures.

10.1 UPDATE PROCESSES

In Chapter 8 (Update processes) we considered the problem of calculating the
temperature of orange juice (OJ) in a can as it cools in a fridge. This is an ex-
ample of an update process, where the main variable is repeatedly updated over
a period of time. We now examine how to solve this problem more generally.

The OJ is initially at temperature 25◦C when it is placed in the fridge, where
the ambient temperature F is 10◦. The standard way to solve such an update
process is to break the time period up into a number of small steps, each of
length dt. If Ti is the temperature at the beginning of step i, we can get Ti+1
from Ti as follows:

Ti+1 = Ti − K dt (Ti − F), (10.1)

where K is a physical constant, and units are chosen so that time is in minutes.

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00016-6
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

237

https://doi.org/10.1016/B978-0-08-102997-8.00016-6

238 CHAPTER 10: Vectors as Arrays and Other Data Structures

10.1.1 Unit time steps

We first solve the problem using a unit time step, i.e., dt = 1. The simplest
way is to use scalars for the time and the temperature, as we saw in Chapter 8
(although we didn’t use a unit time step there):

K = 0.05;
F = 10;
T = 25; % initial temperature of OJ

for time = 1:100 % time in minutes
T = T - K * (T - F); % dt = 1
if rem(time, 5) == 0
disp([time T])

end
end;

Note the use of rem to display the results every 5 minutes: when time is an
integer multiple of 5 its remainder when divided by 5 will be zero.

While this is undoubtedly the easiest way of writing the script, we cannot easily
plot the graph of temperature against time. In order to do that, time and T must
be vectors. The index of the for loop must be used as the subscript of each
element of T. Here’s the script (update1.m):

K = 0.05;
F = 10;
time = 0:100; % initialize vector time
T = zeros(1,101); % pre-allocate vector T
T(1) = 25; % initial temperature of OJ

for i = 1:100 % time in minutes
T(i+1) = T(i) - K * (T(i) - F); % construct T

end;

disp([time(1:5:101)’ T(1:5:101)’]); % display results
plot(time, T), grid % every 5 mins

See Fig. 10.1 for typical graphs.

Note:

■ The statement time = 0:100 sets up a (row) vector for time where time(1)
has the value 0 minutes, and time(101) has the value 100 minutes. This
is necessary because the first subscript of a MATLAB vector must be 1.

10.1 Update processes 239

FIGURE 10.1
Cooling curves.

■ The statement T = zeros(1,101) sets up a corresponding (row) vector
for the temperature, with every element initialized to zero (again there
must be 101 elements, because the first element is for the temperature
at time zero). This process is called pre-allocation. It serves two important
purposes.

(a) Firstly, it clears a vector of the same name left over from a previ-
ous run. This could cause a conflict when attempting to display or
plot T against time, if the vectors have different sizes. To see this,
run update1 as it stands. It should work perfectly. Now suppose
you decide to do the calculations over a shorter time period, say
50 minutes. Remove the zeros statement, and make the follow-
ing additional two changes and re-run the script (but don’t clear
the workspace):

time = 0:50; % initialize vector time
...

for i = 1:50 % time in minutes

This time you get an error message:

??? Error using ==> plot
Vectors must be the same lengths.

whos will reveal that time is correctly 51-by-1, but T is still
101-by-1. The plot command naturally requires these vectors to
have the same lengths.
The problem is that, while the operation 0:50 redefines time cor-
rectly, the for loop does not have the same effect on T. Since T is
being updated element by element, the unused elements from 51

240 CHAPTER 10: Vectors as Arrays and Other Data Structures

to 101 from the previous run are left untouched in the workspace.
Pre-allocation of the correct number of elements to T with zeros
avoids this problem.

(b) Secondly, although the script will work without the zeros state-
ment, as we have seen, it will be much slower, since then T has to
be redimensioned during each repeat of the for loop, in order to
make space for a new element each time.
It’s extremely instructive to do an experiment using a vector size
of 10000 elements, say, i.e.,

time = 0:9999; % initialize vector time
T = zeros(1,10000); % pre-allocate vector T
...
for i = 1:10000
...

(and comment out the disp and plot statements, since these will
obscure the issue). My Pentium II takes 0.99 seconds to run the
script with pre-allocation of T, but 13.19 seconds to run with-
out pre-allocation—more than 10 times longer. This could be a
critical consideration in a script which does a lot of such element-
by-element processing.

■ The first element of T is set to the initial temperature of the OJ. This is the
temperature at time zero.

■ The for loop computes the values for T(2), . . . , T(101).
This arrangement ensures that temperature T(i) corresponds to time(i).

■ The colon operator is used to display the results at 5-minute intervals.

10.1.2 Non-unit time steps

It’s not always appropriate and/or accurate enough to take dt = 1 in Equa-
tion (10.1). There is a standard way of generating the solution vector in
MATLAB, given (almost) any value of dt . We introduce a more general notation
to do this.

Call the initial time a, and the final time b. If we want time steps of length dt ,
the number m of such steps will be

m = (b − a)/dt.

The time at the end of step i will therefore be a + i dt .

The following script, update2.m, implements this scheme. It has some addi-
tional features. It prompts you for a value of dt , and checks that this value gives
an integer number of steps m. It also asks you for the output interval opint
(the intervals in minutes at which the results are displayed in table form) and

10.1 Update processes 241

checks that this interval is an integer multiple of dt . Try the script with same
sample values, e.g., dt = 0.4 and opint = 4.

K = 0.05;

F = 10;

a = 0; % initial time

b = 100; % final time

load train

dt = input(’dt: ’);

opint = input(’output interval (minutes): ’);

if opint/dt ~= fix(opint/dt)

sound(y, Fs)

disp(’output interval is not a multiple of dt!’)

break

end;

m = (b - a) / dt; % m steps of length dt

if fix(m) ~= m % make sure m is integer

sound(y, Fs)

disp(’m is not an integer - try again!’);

break

end;

T = zeros(1,m+1); % pre-allocate (m+1) elements

time = a:dt:b;

T(1) = 25; % initial temperature

for i = 1:m

T(i+1) = T(i) - K * dt * (T(i) - F);

end;

disp([time(1:opint/dt:m+1)’ T(1:opint/dt:m+1)’])

plot(time, T),grid

Note:

■ The vectors T and time must each have m + 1 elements, because there are
m time steps, and we need an extra element for the initial value of each
vector.

■ The expression opint/dt gives the index increment for displaying the re-
sults, e.g., dt = 0.1 and opint = 0.5 displays every (0.5/0.1)th element,
i.e., every 5th element.

242 CHAPTER 10: Vectors as Arrays and Other Data Structures

10.1.3 Using a function

The really cool way of solving this problem is to write a function to do it. This
makes it a lot easier to generate a table of results for different values of dt , say,
using the function from the command line. Here is update2.m rewritten as a
function cooler.m:

function [time, T, m] = cooler(a, b, K, F, dt, T0)

m = (b - a) / dt; % m steps of length dt
if fix(m) ~= m % make sure m is integer

disp(’m is not an integer - try again!’);
break

end;

T = zeros(1,m+1); % pre-allocate
time = a:dt:b;
T(1) = T0; % initial temperature

for i = 1:m
T(i+1) = T(i) - K * dt * (T(i) - F);

end;

Suppose you want to display a table of temperatures against time at 5 minute
intervals, using dt = 1 and dt = 0.1. Here is how to do it (in the Command
Window):

dt = 1;
[t T m] = cooler(0, 100, 0.05, 10, dt, 25);
table(:,1) = t(1:5/dt:m+1)’;
table(:,2) = T(1:5/dt:m+1)’;
dt = 0.1;
[t T m] = cooler(0, 100, 0.05, 10, dt, 25);
table(:,3) = T(1:5/dt:m+1)’;
format bank
disp(table)

Output:

0 25.00 25.00
5.00 21.61 21.67

10.00 18.98 19.09
...

100.00 10.09 10.10

10.1 Update processes 243

Note:

■ The advantage of using a function which generates a vector output vari-
able is that even if you forget to pre-allocate the vector inside the function
(with zeros) MATLAB automatically clears any previous versions of the
output vector before returning from the function.

■ The variable table is a two-dimensional array (or matrix). Recall that
the colon operator may be used to indicate all elements of a matrix in
a row or column. So table(:,1) means the elements in every row and
column 1, i.e., the entire first column. The vectors t and T are row vectors,
so they must be transposed before being inserted into columns 1 and 2
of table.
The third column of table is inserted in a similar way.

■ The results in the third column (for dt = 0.1) will be more accurate.

10.1.4 Exact solution

This cooling problem has an exact mathematical solution. The temperature
T (t) at time t is given by the formula

T (t) = F + (T0 − F)e−Kt , (10.2)

where T0 is the initial temperature. You can insert values for this exact solution
into a fourth column of table, by vectorizing the formula, as follows:

tab(:,4) = 10 + (T(1)-10)*exp(-0.05 * t(1:5/dt:m+1)’);

The enlarged table should look something like this:

0 25.00 25.00 25.00
5.00 21.61 21.67 21.68

10.00 18.98 19.09 19.10
...

Note that the numerical solution generated by Equation (10.1) gets more ac-
curate as dt gets smaller. That is because Equation (10.2) (the exact solution)
is derived from Equation (10.1) in the limit as dt → 0.

Exercise
To complete the analysis of the cooling problem, you may like to superimpose graphs
for different values of K and draw them in different colors. It would also be useful
to label each graph at some convenient place, e.g., with the label ’K = 0.08’. The
command

gtext(’text’)

244 CHAPTER 10: Vectors as Arrays and Other Data Structures

causes an arrow to appear on the graphics screen. You can position the arrow with a
mouse or the arrow keys. When you click (or press Enter), the specified text appears
at that point.

The function gtext takes a string argument. If you want to label with a variable numeric
value, use sprintf to convert a number into a string. It works just like fprintf, except
that the output goes into a string variable, e.g.,

gtext(sprintf(’K = %5.3f’, K))

■ Draw some graphs, on the same set of axes, for different values ofK , in different
colors, and label them. Fig. 10.1 shows what to aim for.
Also superimpose the exact solution, given by Equation (10.2).

Plots can also be labeled interactively in plot editing mode or with the Properties Edi-
tor.

10.2 FREQUENCIES, BAR CHARTS AND HISTOGRAMS

10.2.1 A random walk

Imagine an ant walking along a straight line, e.g., the x-axis. She starts at x = 40.
She moves in steps of one unit along the line. Each step is to the left or the right
with equal probability. We would like a visual representation of how much
time she spends at each position.

Start by running the following script, ant.m:

f = zeros(1,100);
x = 40;

for i = 1:1000
r = rand;
if r >= 0.5
x = x + 1;

else
x = x - 1;

end
if x ~= 0 | x ~= 100
f(x) = f(x) + 1;

end
end

Now enter the statement bar(f) in the Command Window. You should get a
graph which is similar to the one in Fig. 10.2.

10.2 Frequencies, bar charts and histograms 245

FIGURE 10.2
Random walk frequencies.

Note:

■ The function rand returns a random number in the range 0–1. If it’s
greater than 0.5, the ant moves right (x = x + 1), otherwise she moves
left (x = x - 1).

■ The vector f has 100 elements, initially all zero. We define f(x) as the
number of times the ant lands at position x. Suppose her first step is to
the right, so x has the value 41. The statement

f(x) = f(x) + 1

then increases the value of f(41) to 1, meaning that she has been there
once. When she next wanders past this value of x, f(41) will be increased
to 2, meaning she’s been there twice.
When I ran this script, the final value of f(41) was 33—the number of
times the ant was there.

■ f(x) is called a frequency distribution, and the graph obtained from bar(f)

is called a bar graph. Each element of f is represented by a vertical bar of
proportional height. See also help bar.

■ The script ant.m simulates the random movement of the ant. If you re-run
it, you will get a different bar graph, because rand will generate a differ-
ent sequence of random numbers. Simulation is discussed more fully in
Chapter 15.

10.2.2 Histograms

Another helpful way of representing data is with a histogram.

As an example, suppose 12 students write a test and obtain the following marks
(expressed as percentages), which are assigned to the vector m:

0 25 29 35 50 55 55 59 72 75 95 100

The statement hist(m) will draw a histogram. Try it. The histogram shows the
distribution of marks in 10 ‘bins’ (categories) which are equally spaced be-

246 CHAPTER 10: Vectors as Arrays and Other Data Structures

tween the minimum (0) and maximum (100) marks in the set of data. The
number of bins (10 by default) can be specified by a second argument, e.g.,
hist(m, 25).

To generate the frequencies plotted by hist use the following form (which does
not actually draw the histogram):

[n x] = hist(m)

n is a vector containing the frequencies, viz.,

1 0 2 1 0 4 0 2 0 1 1

For example, there is one mark in the first bin (0–9), none in the second
(10–19), two in the third, etc.

The second output vector x contains the midpoints of the bins, such that
bar(x, n) plots the histogram. See Help for more details.

Note the subtle difference between a histogram and a bar graph. The val-
ues plotted by hist are computed from the distribution of values in a vector,
whereas bar generates a bar graph directly from the values themselves.

10.3 SORTING

One of the standard applications of arrays is sorting a list of numbers into, say,
ascending order. Although MATLAB has its own sorting function (sort), you
may be interested in how sorting algorithms actually work.

10.3.1 Bubble Sort

The basic idea is that the unsorted list is assigned to a vector. The numbers are
then ordered by a process which essentially passes through the vector many
times, swopping consecutive elements that are in the wrong order, until all the
elements are in the right order. Such a process is called a Bubble Sort, because
the smaller numbers rise to the top of the list, like bubbles of air in water. (In
fact, in the version shown below, the largest number will ‘sink’ to the bottom
of the list after the first pass, which really makes it a ‘Lead Ball’ sort.) There are
many other methods of sorting, such as the Quick Sort, which may be found in
most textbooks on computer science. These are generally more efficient than
the Bubble Sort, but its advantage is that it is by far the easiest method to
program. A structure plan for the Bubble Sort is as follows:

1. Input the list X

2. Set N to the length of X

10.3 Sorting 247

Table 10.1 Memory during a Bubble Sort.

1st pass 2nd pass 3rd pass 4th pass

X1: 27/13 13/9 9/5 5/3

X2: 13/27/9 9/13/5 5/9/3 3/5

X3: 9/27/5 5/13/3 3/9 9

X4: 5/27/3 3/13 13 13

X5: 3/27 27 27 27

4 tests 3 tests 2 tests 1 test

3. Repeat N − 1 times with counter K :
Repeat N − K times with counter J :

If Xj > Xj+1 then
Swop the contents of Xj and Xj+1

4. Stop since the list X is now sorted.

As an example, consider a list of five numbers: 27, 13, 9, 5 and 3. They are
initially input into the vector X. Part of MATLAB’s memory for this problem is
sketched in Table 10.1. Each column shows the list during each pass. A stroke
in a row indicates a change in that variable during the pass as the script works
down the list. The number of tests (Xj > Xj+1?) made on each pass is also
shown in the table. Work through the table by hand with the structure plan
until you understand how the algorithm works.

Sorting algorithms are compared by calculating the number of tests (compar-
isons) they carry out, since this takes up most of the execution time during the
sort. On the Kth pass of the Bubble Sort there are exactly N − K tests, so the
total number of tests is

1 + 2 + 3 + · · · + (N − 1) = N(N − 1)/2

(approximately N2/2 for large N). For a list of five numbers there are therefore
10 tests, but for 10 numbers there are 45 tests. The computer time needed goes
up as the square of the length of the list.

The function M-file bubble.m below departs slightly from the structure plan
above, which will make N − 1 passes, even if the list is sorted before the last pass.
Since most real lists are partially sorted, it makes sense to check after each pass
if any swops were made. If none were, the list must be sorted, so unnecessary
(and therefore time-wasting) tests can be eliminated. In the function, the vari-
able sorted is used to detect when the list is sorted, and the outer loop is coded
instead as a non-deterministic while loop. Here it is:

function y = bubble(x)
n = length(x);
sorted = 0; % flag to detect when sorted

248 CHAPTER 10: Vectors as Arrays and Other Data Structures

k = 0; % count the passes

while ~sorted
sorted = 1; % they could be sorted
k = k + 1; % another pass
for j = 1:n-k % fewer tests on each pass
if x(j) > x(j+1) % are they in order?
temp = x(j); % no ...
x(j) = x(j+1);
x(j+1) = temp;
sorted = 0; % a swop was made

end
end

end;

y = x;

You can test it on the command line to sort say 20 random numbers as follows:

r = rand(1,20);
r = bubble(r);

Note how bubble changes its input vector.

On my PC bubble takes 1.81 seconds to sort 200 random numbers, but
7.31 seconds to sort 400 numbers. This is consistent with the theoretical re-
sult obtained above.

10.3.2 MATLAB’s sort

The built-in MATLAB function sort returns two output arguments: the sorted
list (in ascending order) and a vector containing the indexes used in the sort,
i.e., the positions of the sorted numbers in the original list. If the random
numbers

r = 0.4175 0.6868 0.5890 0.9304 0.8462

are sorted with the command

[y,i] = sort(r)

the output variables are

y = 0.4175 0.5890 0.6868 0.8462 0.9304
i = 1 3 2 5 4

10.4 Structures 249

For example, the index of the second largest number (0.5890) is 3, which is its
subscript in the original unsorted list r.

As a matter of fact, the built-in functions max and min also return second output
variables giving indexes.

MATLAB’s sort is very fast. My PC takes 2.36 seconds to sort a list of one mil-
lion random numbers! This is because (a) a Quick Sort is used, and (b) the
script has been compiled as a built-in function; this makes for faster code.

10.4 STRUCTURES

Up to now we have seen arrays with only one type of element—all numeric,
or all character. A MATLAB structure allows you to put different kinds of data
in its various fields. For example, we can create a structure called student with
one field for a student’s name,

student.name = ’Thandi Mangwane’;

a second field for her student ID number,

student.id = ’MNGTHA003’;

and a third field for all her marks to date,

student.marks = [36 49 74];

To see the whole structure, enter its name:

student

student =
name: ’Thandi Mangwane’

id: ’MNGTHA003’
marks: [36 49 74]

Here’s how to access her second mark:

student.marks(2)
ans =

49

Note the use of the dot to separate the structure name from its fields when
creating it and when accessing its fields.

To add further elements to the structure, use subscripts after the structure name:

250 CHAPTER 10: Vectors as Arrays and Other Data Structures

student(2).name = ’Charles Wilson’
student(2).id = ’WLSCHA007’
student(2).marks = [49 98]

(the original student, Thandi Mangwane, is now accessed as student(1)). Note
that field sizes do not have to conform across elements of a structure array:
student(1).marks has three elements, while student(2).marks has only two
elements.

The student structure now has size 1-by-2: it has two elements, each element
being a student with three fields. Once a structure has more than one element
MATLAB does not display the contents of each field when you type the struc-
ture name at the command line. Instead, it gives the following summary:

student

student =
1x2 struct array with fields:

name
id
marks

You can also use fieldnames(student) to get this information.

A structure array can be preallocated with the struct function. See Help.

A structure field can contain any kind of data, even another structure—why
ever not? Thus we can create a structure course of courses taken by students,
where one field is the name of the course, and another field is a student struc-
ture with information on all the students taking that particular course:

course.name = ’MTH101’;
course.class = student;
course

course =
name: ’MTH101’

class: [1x2 struct]

We can set up a second element of course for a different class of students:

course(2).name = ’PHY102’;
course(2).class = ...

To see all the courses:

10.5 Cell arrays 251

course(1:2).name
ans =
MTH101
ans =
PHY102

To see all the students in a particular course:

course(1).class(1:2).name
ans =
Thandi Mangwane
ans =
Charles Wilson

There is a curious function called deal which ‘deals inputs to outputs’. You can
use it to generate ‘comma-separated variable lists’ from structure fields:

[name1, name2] = deal(course(1).class(1:2).name);

(but you don’t actually need the commas here . . .).

You can use the rmfield function to remove fields from a structure.

10.5 CELL ARRAYS

A cell is the most general data object in MATLAB. A cell may be thought of as
a ‘data container’, which can contain any type of data: numeric arrays, strings,
structures, or cells. An array of cells (and they almost always occur in arrays) is
called a cell array. While you might think a cell sounds the same as a structure,
a cell is more general, and there are also notational differences (which are
confusing!).

10.5.1 Assigning data to cell arrays

There are a number of ways of assigning data to cell arrays.

■ Cell indexing:

c(1,1) = {rand(3)};
c(1,2) = {char(’Bongani’, ’Thandeka’)};
c(2,1) = {13};
c(2,2) = {student};

c =
[3x3 double] [2x8 char]
[13] [1x2 struct]

252 CHAPTER 10: Vectors as Arrays and Other Data Structures

(assuming that the structure student created above still exists). Here the
round brackets on the left-hand side of the assignments refer in the nor-
mal way to the elements of the cell array. What is different are the curly
braces on the right. Curly braces indicate the contents of a cell; on the
right-hand side of an assignment they are technically cell array construc-
tors (remember that each element of this array is a cell).
So read the first statement as

‘Construct a cell containing rand(3) and assign the cell to element 1,1 of
the cell array c.’

■ Content indexing:

c{1,1} = rand(3);
c{1,2} = char(’Bongani’, ’Thandeka’);
c{2,1} = 13;
c{2,2} = student;

Here the curly braces on the left indicate the contents of the cell element
at that particular location. So read the first statement as

‘The contents of the cell at location 1,1 becomes rand(3).’

■ You can use the curly braces to construct an entire cell array in one state-
ment:

b = {[1:5], rand(2); student, char(’Jason’, ’Amy’)}
b =

[1x5 double] [2x2 double]
[1x2 struct] [2x5 char]

A cell may contain another cell array; nested curly braces may be used to
create nested cell arrays.

■ The cell function enables you to preallocate empty cell arrays, e.g.

a = cell(3,2) % empty 3-by-2 cell array
a =

[] []
[] []
[] []

You can then use assignment statements to fill the cells, e.g.

a(2,2) = {magic(3)}

Note: if you already have a numeric array with a certain name, don’t try to
create a cell array of the same name by assignment without first clearing the
numeric array. If you don’t clear the numeric array, MATLAB will generate an
error (it will think you are trying to mix cell and numeric syntaxes).

10.5 Cell arrays 253

10.5.2 Accessing data in cell arrays

You can access cell contents using content indexing (curly braces):

r = c{1,1}
r =

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

To access a subset of a cell’s contents you can concatenate curly braces and
round brackets if necessary:

rnum = c{1,1}(2,3)
rnum =

0.9355

Here the curly braces (content indexing) indicate the contents of the cell array
element c(1,1), which is a 3-by-3 numeric matrix. The subscripts (2,3) then
indicate the appropriate element within the matrix.

Curly braces may be concatenated to access nested cell arrays.

10.5.3 Using cell arrays

Cell arrays come into their own when you need to access (different types of)
data as ‘comma-separated variable lists’, as the next example demonstrates.

The functions varargin and varargout, which allow a function to have any
number of input or output arguments, are none other than cell arrays. The
function testvar has a variable number of input arguments, which are dou-
bled into the variable number of output arguments (assuming that the number
of output arguments does not exceed the number of input arguments):

function [varargout] = testvar(varargin)

for i = 1:length(varargin)
x(i) = varargin{i}; % unpack the input args

end

for i = 1:nargout % how many output arguments?
varargout{i} = 2*x(i); % pack up the output args

end

Command line:

254 CHAPTER 10: Vectors as Arrays and Other Data Structures

[a b c] = testvar(1, 2, 3, 4)
a =

2
b =

4
c =

6

When a function is called with the input argument varargin MATLAB auto-
matically packs the list of corresponding input arguments into a cell array. You
then simply unpack the cell array inside the function using the curly brace con-
tent indexing. You similarly pack up the output arguments into the cell array
varargout.

Note that, should your function have some compulsory input and output ar-
guments, varargin and varargout must appear at the end of their respective
argument lists.

MATLAB has a discussion on when to use cell arrays in the section Organizing
Data in Cell Arrays, to be found in MATLAB Help: Programming and Data
Types: Structures and Cell Arrays.

10.5.4 Displaying and visualizing cell arrays

The function celldisp recursively displays the contents of a cell array.

The function cellplot draws a visualization of a cell array. Fig. 10.3 depicts
the contents of the cell array c, created above. Non-empty array elements are
shaded.

10.6 CLASSES AND OBJECTS

You’d have to be living face down in a moon crater not to have heard
about object-oriented programming. Tom Swan.
Object-oriented programming is an exceptionally bad idea which could
only have originated in California. Edsger Dijkstra.

MATLAB, along with most other modern programming languages, espouses
the cause of object-oriented programming, and has all the usual parapherna-
lia associated with this paradigm: classes, objects, encapsulation, inheritance,
operator overloading, etc., etc.

Object-oriented programming is a subject which requires an entire book to
do justice to it. If you want to learn about the concepts, there are many ex-
cellent books on the subject. If you want to see how MATLAB implements
object-oriented programming, consult the online Help: MATLAB Help: Pro-
gramming and Data Types: MATLAB Classes and Objects.

Summary 255

FIGURE 10.3
Result of cellplot(c).

SUMMARY

■ A MATLAB structure allows you to store different types of data in its vari-
ous fields.

■ Arrays of structures may be created.
■ A cell is the most general data object in MATLAB, and can store any type

of data.
■ An array of cells is called a cell array—each cell in the array can store

different types of data, including other cell arrays.
■ A cell array is constructed with curly braces {}.
■ The contents of cell in a cell array is accessed with content indexing (curly

braces).
■ Cell elements in a cell array are accessed in the usual way with round

brackets (cell indexing).
■ Arguments of functions using a variable number of arguments are packed

into cell arrays.
■ The function cellplot gives a visualization of a cell array.
■ MATLAB implements object-oriented programming.

CHAPTER 11

Errors and Pitfalls

CONTENTS

Syntax errors ... 257
Incompatible vector
sizes.................... 257
Name hiding 258

Logic errors 258
Rounding error . 259
Summary 260
Chapter
exercises......... 260

THE OBJECTIVE OF THIS CHAPTER IS TO ENABLE YOU TO:

■ Begin to recognize and avoid different sorts of errors and pitfalls.

Even experienced programmers seldom get programs to run correctly the first
time. In computer jargon, an error in a program is called a bug. The story is
that a hapless moth short-circuited two thermionic valves in one of the earliest
computers. This primeval (charcoaled) ‘bug’ took days to find. The process of
detecting and correcting such errors is therefore called debugging. There are a
number of different types of errors and pitfalls, some of which are peculiar to
MATLAB, and some of which may occur when programming in any language.
These are discussed briefly in this chapter.

11.1 SYNTAX ERRORS

Syntax errors are typing errors in MATLAB statements (e.g., plog instead of
plot). They are the most frequent type of error, and are fatal: MATLAB stops
execution and displays an error message. As MATLAB evolves from one version
to the next, error messages improve. Try the following examples to examine
the latest error messages:

2*(1+3

disp([’the answer is ’ num2str(2)]

There are many possible syntax errors—you will probably have discovered a
few yourself. With experience you will become more adept at spotting your
mistakes.

The function lasterr returns the last error message generated.

11.1.1 Incompatible vector sizes

Consider the following statements:

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00017-8
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

257

https://doi.org/10.1016/B978-0-08-102997-8.00017-8

258 CHAPTER 11: Errors and Pitfalls

x = 0:pi/20:3*pi;
y = sin(x);
x = 0:pi/40:3*pi;
plot(x,y)

You’ll get the error message

Error using ==> plot
Vectors must be the same lengths.

because you forgot to recalculate y after reducing the x increments. whos reveals
the problem:

x 1x121 ...
y 1x61 ...

11.1.2 Name hiding

Recall that a workspace variable ‘hides’ a script or function of the same name.
The only way to access such a script or function is to clear the offending vari-
able from the workspace.

Furthermore, a MATLAB function hides a script of the same name, e.g., create
a script called why.m that displays some junk message, and then type why at the
command line.

If you are worried that a variable or script which you are thinking of creating,
say blob, may be a MATLAB function, try help blob first.

11.2 LOGIC ERRORS

These are errors in the actual algorithm you are using to solve a problem, and
are the most difficult to find; the program runs, but gives the wrong answers!
It’s even worse if you don’t realize the answers are wrong. The following tips
might help you to check out the logic.

■ Try to run the program for some special cases where you know the an-
swers.

■ If you don’t know any exact answers, try to use your insight into the
problem to check whether the answers seem to be of the right order of
magnitude.

■ Try working through the program by hand (or use MATLAB’s excellent
interactive debugging facilities—see Chapter 10) to see if you can spot
where things start going wrong.

11.3 Rounding error 259

11.3 ROUNDING ERROR

At times, as we have seen, a program will give numerical answers which we
know are wrong. This can also be due to rounding error, which results from the
finite precision available on the computer, i.e., eight bytes per variable, instead
of an infinite number.

Run the following program:

x = 0.1;
while x ~= 0.2
x = x + 0.001;
fprintf(’%g %g\n’, x, x - 0.2)

end

You will find that you need to crash the program to stop it, i.e., with Ctrl-break
on a PC. The variable x never has the value 0.2 exactly, because of rounding
error. In fact, x misses 0.2 by about 8.3 × 10−17, as can be seen from displaying
the value of x - 0.2. It would be better to replace the while clause with

while x <= 0.2

or, even better, with

while abs(x - 0.2) > 1e-6

In general, it is always better to test for ‘equality’ of two non-integer expressions
as follows:

if abs((a-b)/a) < 1e-6 disp(’a practically equals b’), end

or

if abs((a-b)/b) < 1e-6 ...

Note that this equality test is based on the relative difference between a and b,
rather than on the absolute difference.

Rounding error may sometimes be reduced by a mathematical re-arrangement
of a formula. Recall yet again the common or garden quadratic equation

ax2 + bx + c = 0,

260 CHAPTER 11: Errors and Pitfalls

with solutions

x1 = (−b +
√

b2 − 4ac)/(2a),

x2 = (−b −
√

b2 − 4ac)/(2a).

Taking a = 1, b = −107 and c = 0.001 gives x1 = 107 and x2 = 0. The second
root is expressed as the difference between two nearly equal numbers, and con-
siderable significance is lost. However, as you no doubt remember, the product
of the two roots is given by c/a. The second root can therefore be expressed as
(c/a)/x1. Using this form gives x2 = 10−10, which is more accurate.

SUMMARY

■ Syntax errors are mistakes in the construction of MATLAB statements.
■ Logical errors are errors in the algorithm used to solve a problem.
■ Rounding error occurs because a computer can store numbers only to a

finite accuracy.

CHAPTER EXERCISES

11.1 The Newton quotient

f (x + h) − f (x)

h

may be used to estimate the first derivative f ′(x) of a function f (x), if
h is ‘small’. Write a program to compute the Newton quotient for the
function

f (x) = x2

at the point x = 2 (the exact answer is 4) for values of h starting at 1,
and decreasing by a factor of 10 each time (use a for loop). The effect
of rounding error becomes apparent when h gets ‘too small’, i.e., less
than about 10−12.

11.2 The solution of the set of simultaneous equations

ax + by = c

dx + ey = f

(Exercise 3.6) is given by

x = (ce − bf)/(ae − bd),

y = (af − cd)/(ae − bd).

Chapter exercises 261

If (ae − bd) is small, rounding error may cause quite large inaccuracies
in the solution. Consider the system

0.2038x + 0.1218y = 0.2014,

0.4071x + 0.2436y = 0.4038.

Show that with four-figure floating point arithmetic the solution ob-
tained is x = −1, y = 3. This level of accuracy may be simulated in the
solution of Exercise 3.6 with some statements like

ae = floor(a * e * 1e4) / 1e4!

and appropriate changes in the coding. The exact solution, obtained
without rounding, is x = −2, y = 5. If the coefficients in the equations
are themselves subject to experimental error, the ‘solution’ of this sys-
tem using limited accuracy is totally meaningless.

2PART

Applications

Part 2 is on applications. Since this is an introductory course, the applications
are not extensive. They are illustrative. You ought to recognize that the kinds
of problems you actually can solve with MATLAB are much more challenging
than the examples provided. However, many of the examples can be a starting
point for the development of solutions to more challenging problems. The
goal of this part of the text is to begin to scratch the surface of the true power
of MATLAB.

CHAPTER 12

Dynamical Systems

CONTENTS

Cantilever beam 267

Electric current 268

Free fall 271
Projectile with
friction 280
Summary 284
Exercises 284

THE OBJECTIVE OF THIS CHAPTER IS TO DISCUSS THE IM-
PORTANCE OF LEARNING TO USE TOOLS LIKE MATLAB.

MATLAB and companion toolboxes provide engineers, scientists, mathematicians,
and students of these fields with an environment for technical computing appli-
cations. It is much more than a programming language like C, C++ or Fortran.
Technical computing includes mathematical computation, analysis, visualization,
and algorithm development. The MathWork website describes “The Power of Tech-
nical Computing with MATLAB” as follows:

■ Whatever the objective of your work—an algorithm, an analysis, a graph,
a report, or a software simulation—technical computing with MATLAB
lets you work more effectively and efficiently. The flexible MATLAB envi-
ronment lets you perform advanced analyses, visualize data, and develop
algorithms by applying the wealth of functionality available. With its
more than 1000 mathematical, statistical, scientific and engineering func-
tions, MATLAB gives you immediate access to high-performance numer-
ical computing. This functionality is extended with interactive graphical
capabilities for creating plots, images, surfaces, and volumetric represen-
tations.

■ The advanced toolbox algorithms enhance MATLAB’s functionality in do-
mains such as signal and image processing, data analysis and statistics,
mathematical modeling, and control design. Toolboxes are collections
of algorithms, written by experts in their fields, that provide application-
specific numerical, analysis, and graphical capabilities. By relying on the
work of these experts, you can compare and apply a number of tech-
niques without writing code. As with MATLAB algorithms, you can cus-
tomize and optimize toolbox functions for your project requirements.

In this chapter we are going to examine the application of MATLAB capabili-
ties with four relatively simple problems in engineering science. The problems
are the deflection of a cantilever beam subject to a uniform load, a single-
loop closed electrical circuit, the free fall problem, and an extension of the
projectile problem discussed in Chapter 3. The first problem is on a structural
element you investigate in a first course in engineering mechanics. The struc-

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00019-1
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

265

https://doi.org/10.1016/B978-0-08-102997-8.00019-1

266 CHAPTER 12: Dynamical Systems

tural element is the cantilever beam, which is one of the primary elements of
engineered structures, e.g., buildings and bridges. We examine the deflection of
this beam with a constant cross section when subject to a uniform distribution
of load, e.g., its own weight.

The second problem is an examination of the equation that describes the
“flow” of electrical current in a simple closed-loop electrical circuit. You ex-
amine this type of problem in a first course in electrical science.

The third problem is the free fall of an object in a gravitational field with con-
stant acceleration, g. This is one of the first problems you examine in a first
course in physics. We examine the effect of friction on the free-fall problem
and, hence, learn that with friction (i.e., air resistance) the object can reach a
terminal velocity.

The fourth problem is an extension of the projectile that takes into account air
resistance (you learn about air resistance in your first course in fluid mechan-
ics). By an examination of this problem, you will learn why golfers do not hit
the ball from the tee at 45 degrees from the horizontal (which is the optimum
angle for the furthest distance of travel of a projectile launched in frictionless
air).

Before we begin, you must keep in mind that this is not a book on engineering
or science; it is an introduction to the essential elements of MATLAB, a pow-
erful technical analysis tool. In this and subsequent chapters you will scratch
the surface of its power by solving some relatively simple problems that you
have encountered or will encounter early in your science or engineering edu-
cation. Keep in mind that MATLAB is a tool that can be used for a number of
very productive purposes. One purpose is to learn how to write programs to
investigate topics you confront in the classroom. You can extend your knowl-
edge of MATLAB by self-learning to apply the utilities and any of the toolboxes
that are available to you to solve technical problems. This tool requires a com-
mitment from you to continue to discover and to use the power of the tool
as part of your continuing education. Developing high-quality computer pro-
grams within the MATLAB environment in order to solve technical problems
requires that you use the utilities available. If you need to write your own code
you should, if at all possible, include the utilization of generic solvers of par-
ticular types of equations that are available in MATLAB. Of course, to do this
you need to learn more advanced mathematics, science and engineering. You
will certainly have the opportunity to do this after freshman year.

As a student majoring in science and engineering you will take at least five
semesters of mathematics. The fifth course is usually titled Advanced Calcu-
lus, Advanced Engineering Mathematics, Applied Mathematics, or Methods
of Mathematical Physics. Topics covered in this course are typically ordinary
differential equations, systems of differential equations (including nonlinear
systems), linear algebra (including matrix and vector algebra), vector calculus,

12.1 Cantilever beam 267

Fourier analysis, Laplace transforms, partial differential equations, complex
analysis, numerical methods, optimization, probability and statistics. By click-
ing the question mark (?) near the center of the upper-most tool bar in the
MATLAB desk top, as you already know, opens the help browser. Scan the top-
ics and find utilities and examples of approaches to solve problems in all of
these subjects and more.

The Control Systems Toolbox is an example of one of the numerous engineer-
ing and scientific toolboxes that have been developed to advance the art of
doing science and engineering. SIMULINK and Symbolics are also very im-
portant toolboxes. The latter two are included with your “student version”
of MATLAB. One of the big advantages of SIMULINK, in addition to being
a graphical algorithm-development and programming environment, is that it
is useful when using the computer to measure, record and access data from
laboratory experiments or data from industrial-process monitoring systems.
Symbolics is very useful because it allows you to do symbolic mathematics,
e.g., integrating functions like the ones you integrate in your study of the cal-
culus. All of the mathematical subjects investigated by you, as a science or
engineering major, are applied in your science and engineering courses. They
are the same techniques that you will apply as a professional (directly or indi-
rectly depending on the software tools available within the organization that
you are employed). Thus, you can use your own copy of MATLAB to help you
understand the mathematical and software tools that you are expected to apply
in the classroom as well as on the job.

12.1 CANTILEVER BEAM

In this section we want to examine the problem of the cantilever beam. The
beam and its deflection under load is illustrated in Fig. 12.1 below, which
is generated by the script m-file created to solve the problem posed next.
Many structural mechanics formulas are available in Formulas for Stress and
Strain, Fifth Edition by Raymond J. Roark and Warren C. Young, published by
McGraw-Hill Book Company (1982). For a uniformly loaded span of a can-
tilever beam attached to a wall at x = 0 with the free end at x = L, the formula
for the vertical displacement from y = 0 under the loaded condition with y the
coordinate in the direction opposite that of the load can be written as follows:

Y = y 24EI

wL4
= −

(
X4 − 4X3 + 6X2

)
,

where X = x/L, E is a material property known as the modulus of elastic-
ity, I is a geometric property of the cross-section of the beam known as the
moment of inertia, L is the length of the beam extending from the wall from
which it is mounted, and w is the load per unit width of the beam (this is a
two-dimensional analysis). The formula was put into dimensionless form to

268 CHAPTER 12: Dynamical Systems

answer the following question: What is the shape of the deflection curve when
the beam is in its loaded condition and how does it compare with its unloaded
perfectly horizontal orientation? The answer will be provided graphically. This
is easily solved by using the following script:

%
% The deflection of a cantilever beam under a uniform load
% Script by D.T.V. September 2006, May 2016
% Revised 2018
% Step 1: Select the distribution of X’s from 0 to 1
% where the deflections to be plotted are to be determined.
%
X = 0:.01:1;
%
% Step 2: Compute the deflections Y at eaxh X. Note that YE is
% the unloaded position of all points on the beam.
%
Y = - (X.^4 - 4 * X.^3 + 6 * X.^2);
YE = 0;
%
% Step 3: Plot the results to illustrate the shape of the
% deflected beam.
%
plot([0 1],[0 0],’--’,X,Y,’LineWidth’,2)
axis([0,1.5,-4, 1]),title(’Deflection of a cantilever beam’)
xlabel(’X’),ylabel(’Y’)
legend(’Unloaded cantilever beam’,’Uniformly loaded beam’)
%
% Step 4: Stop

Again, the results are plotted in Fig. 12.1. It looks like the beam is deflected
tremendously. The actual deflection is not so dramatic once the actual material
properties are substituted to determine y and x in, say, meters. The scaling, i.e.,
re-writing the equation in dimensionless form in terms of the unitless quan-
tities Y and X, provides insight into the shape of the curve. In addition, the
shape is independent of the material as long as it is a material with uniform
properties and the geometry has a uniform cross sectional area, e.g., rectangu-
lar with height h and width b that are independent of the distance along the
span (or length) L.

12.2 ELECTRIC CURRENT

When you investigate electrical science you investigate circuits with a variety of
components. In this section we will solve the governing equation to examine

12.2 Electric current 269

FIGURE 12.1
The vertical deflection of a uniformly loaded, cantilever beam.

the dynamics of a single, closed loop electrical circuit. The loop contains a volt-
age source, V (e.g., a battery), a resistor, R (i.e., an energy dissipation device),
an inductor, L (i.e., an energy storage device), and a switch which is instanta-
neously closed at time t = 0. From Kirchoff’s law, as described in the book by
Ralph J. Smith entitled Circuits, Devices, and Systems, published by John Wiley
& Sons, Inc. (1967), the equation describing the response of this system from
an initial state of zero current is as follows:

L
d i

dt
+ R i = V,

where i is the current. At t = 0 the switch is engaged to close the circuit and
initiate the current. At this instant of time the voltage is applied to the resistor
and inductor (which are connected in series) instantaneously. The equation
describes the value of i as a function of time after the switch is engaged. Hence,
for the present purpose, we want to solve this equation to determine i versus t

graphically. Rearranging this equation, we get

d i

dt
+ R

L
i = V

L
.

The solution, by inspection (another method that you learn when you take
differential equations), is

i = V

R

(
1 − e− R

L
t
)

.

This solution is checked with the following script:

270 CHAPTER 12: Dynamical Systems

%
% Script to check the solution to the soverning
% equation for a simple circuit, i.e., to check
% that
% i = (V/R) * (1 - exp(-R*t/L))
%
% is the solution to the following ODE
%
% di/dt + (R/L) * i - V/L = 0
%
% Step 1: We will use the Symbolics tools; hence,
% define the symbols as follows
%

syms i V R L t
%
% Step 2: Construct the solution for i
%

i = (V/R) * (1 - exp(-R*t/L));
%
% Step 3: Find the derivative of i
%

didt = diff(i,t);
%
% Step 4: Sum the terms in ODE
%

didt + (R/L) * i - V/L;
%
% Step 5: Is the answer ZERO?
%

simple(ans)
%
% Step 6: What is i at t = 0?
%
subs(i,t,0)
%
% REMARK: Both answers are zero; hence,
% the solution is correct and the
% initial condition is correct.
%
% Step 7: To illustrate the behavior of the
% current, plot i vs. t for V/R = 1
% and R/L = 1. The curve illustrates
% the fact that the current approaches
% i = V/R exponentially.
%

12.3 Free fall 271

FIGURE 12.2
Exponential approach to steady current condition of a simple RL circuit with an instantaneously applied
constant voltage.

V = 1; R = 1; L = 1;
t = 0 : 0.01 : 6;
i = (V/R) * (1 - exp(-R.*t/L));
plot(t,i,’ro’), title(Circuit problem example)

xlabel(’time, t’),ylabel(’current, i’)
%

When you run this script you will prove that the solution given above is correct.
The figure that illustrates the solution to the problem posed is reproduced in
Fig. 12.2. This concludes this exercise related to electrical circuit theory that
you will learn more about in your course on electrical science.

12.3 FREE FALL

In this section we are going to use MATLAB to not only investigate the problem
of free fall with friction (or air resistance), we are going to use MATLAB to
check the theoretical results found in the literature. This example deals with the
application of MATLAB for computing and graphically presenting information
for analysis of the problem of free fall. This investigation is to examine the
effect of air resistance on the distance of free fall in 5 seconds from a location
y = 0, where the object is initially at rest (y is in the direction of gravity).
Hence, we want to determine the distance, y = L that an object falls from a
state of rest with and without air resistance. In the book entitled Introduction
to Theoretical Mechanics by R.A. Becker, that was published by McGraw-Hill
Book Company (1954), the equations for free fall are given. The three cases of
interest are as follows:

272 CHAPTER 12: Dynamical Systems

1. Without air resistance:

a = d2y

dt2
= g, v = dy

dt
= gt, y = 1

2
gt2,

where a is the acceleration of the object, v is its speed and y is the dis-
tance of its free fall from the start of motion at t = 0.

2. With resistance proportional to the linear power of velocity:

a = d2y

dt2
= g−k

dy

dt
, v = dy

dt
= g

k

(
1 − e−kt

)
, y = g

k
t − g

k2

(
1 − e−kt

)
.

3. With resistance proportional to the second power of velocity:

a = d2y

dt2
= g − k

(
dy

dt

)2

, v = dy

dt
= 1

2

g

k
tanh

(
gk

2
t

)
,

y = 1

k
loge

[
cosh (gkt/2)

]
.

For all three cases the initial condition is y = v = 0 at t = 0. (You will learn
more about ordinary differential equations in your third semester of mathe-
matics. In addition, in a first course in fluid mechanics you will learn about
some of the details about air resistance. In particular, for air resistance associ-
ated with “laminar flow” problems, case 2 applies. In many practical situations
it is case 3 that is usually the case of interest; this is the case where “turbulent
flow” is important.)

Let us consider the following problem: Let us assume the above equations are
correct. Note that they are written for a unit of mass. Let us also assume g =
9.81 m/s2 and k = 0.2 for the air-drag parameter. Finally, let us answer the
following:

(a) What is y in meters for t = 5 seconds of free fall for the three cases.
(b) What are the terminal speeds in meters per second for cases 2 and 3

for the specified air-drag parameter?
(c) Is the terminal speed reached at t = 5 seconds?

Note:

The terminal speeds are g/k and (g/k)/2 for cases 2 and 3, respectively, where
the terminal speed is the time independent or steady speed reached after a
sufficient distance of free fall. It is the speed at which the gravitational force
balances the air resistance force. From Part I, the Essentials, we learned that
MATLAB is quite useful in this type of problem because it has the capability of
computing the elementary functions in the formulas above.

As part of providing an answer to the questions raised, we want to examine the
distance of free fall within the 5 seconds of flight time with the equations for y

12.3 Free fall 273

given above. Let us examine the influence of air resistance on free fall graphi-
cally; thus, we need to plot the distance y versus t from t = 0 to t = 5 seconds.
We shall plot all three curves on one figure for direct comparison. We will show
that for a short period of time (significantly less than the 5 seconds) after the
onset of motion all three curves are on top of each other. We will also show
that at t = 5 seconds the distances of free fall are quite different.

The steps in the structure plan and the MATLAB code are as follows:

%
% Free fall analysis (saved as FFall.m):
% Comparison of exact solutions of free
% fall with zero, linear and quadratic
% friction for t = 0 to 5 seconds.
%
% Script by D. T. V. September 2006.
% Revised by D.T.V. 2008/2016/2018.
%
% Step 1: Specify constants
%
% Friction coefficient provided in the problem statement.
k = 0.2;
% Acceleration of gravity in m/s/s.
g = 9.81;
%
% Step 2: Selection of time steps for computing solutions
%
dt = .01;
%
% Step 3: Set initial condition (the same for all cases)
%
t(1) = 0.; v(1) = 0.; y(1) = 0.;
%
t = 0:dt:5;
%
% Step 4: Compute exact solutions at each time step
% from t = 0 to 5.
%
% (a) Without friction:
%

v = g * t;
y = g * t.^2 * 0.5;

%
% (b) Linear friction
%

274 CHAPTER 12: Dynamical Systems

velf = (g/k) * (1. - exp(-k*t));

yelf = (g/k) * t - (g/(k^2)) * (1.-exp(-k*t));

%

% (c) Quadratic friction

%

veqf = sqrt(g/k) * tanh(sqrt(g*k) * t);

yeqf = (1/k) * log(cosh(sqrt(g*k) * t));

%

% Step 5: Computation of the terminal speeds

% (cases with friction)

%

velfT = g/k;

veqfT = sqrt(g/k);

%

% Step 6: Graphical comparison

%

plot(t,y,t,yelf,t,yeqf)

title(’Fig 1. Comparison of results’)

xlabel(’ Time, t’)

ylabel(’ Distance, y ’)

figure

plot(t,v,t,velf,t,veqf)

title(’Fig. 2. Comparison of results’)

xlabel(’ Time, t’)

ylabel(’ Speed, v ’)

%

% Step 7: Comparison of distance and speed at t = 5

%

disp(’ ’);

fprintf(’ y(t) = %f, yelf(t) = %f, yeqf(t) = %f at t = %f\n’,...

y(501),yelf(501),yeqf(501),t(501))

disp(’ ’);

fprintf(’ v(t) = %f, velf(t) = %f, veqf(t) = %f at t = %f\n’,...

y(501),yelf(501),yeqf(501),t(501))

%

% Step 8: Comparison of terminal velocity

%

disp(’ ’);

fprintf(’ velfT = %f, veqfT = %f\n’,...

velfT,veqfT)

%

% Step 9: Stop

%

12.3 Free fall 275

FIGURE 12.3
Comparison of free-fall distance: Top curve is for no friction, middle curve is for linear friction and the
bottom curve is for quadratic friction.

The command window execution of the file above (named FFALL.m) gives the
comparisons in Figs. 12.3 and 12.4 and the printed results as follows:

>> FFall

y(t) = 122.625000, yelf(t) = 90.222433, yeqf(t) = 31.552121 at t = 5.000000
v(t) = 49.050000, velf(t) = 31.005513, veqf(t) = 7.003559 at t = 5.000000
velfT = 49.050000, veqfT = 7.003571

The figures illustrate, as we may have expected, that for no friction the object
falls the furthest distance. The case with quadratic friction reaches terminal
velocity well within the five seconds examined. The linear friction case did not
reach terminal speed, yet it is moving at a slower velocity as compared with the
no friction case. Keep in mind that a unit mass object is falling with a friction
coefficient k = 0.2. The same k was used for both the second and third cases.
Within the first half second from the time of release the three curves are not
distinguishable illustrating the fact that it takes a little time before the friction
effects are felt. At the time of 5 seconds after release, the speed and the distance
fallen are quite different. It is not surprising that quadratic friction slows the
object quicker because the air resistance (or friction) is proportional to the
speed squared, which is significantly larger than speed to the first power (as it
is in the linear-friction case).

The above analysis was based on the exact solutions of the free-fall problem.
Let use now use the symbolic tools to check the theoretical results found in the
literature. The case that we will examine is Case 2, the linear friction case. The
following script was implemented in the Command Window. The responses
of MATLAB are also reproduced.

276 CHAPTER 12: Dynamical Systems

FIGURE 12.4
Comparison of free-fall speed: Top curve is for no friction, middle curve is for linear friction and the
bottom curve is for quadratic friction.

%

% The formula for the distance of free fall

% of an object from rest with linear friction

% is as follows:

%

% y = (g / k) * t - (g/k^2) * [1 - exp^(- k t)].

%

% To check the theory, we want to differentiate

% this twice to determine the formulas for velocity

% v and acceleration a, respectively. The results

% should match the published results.

%

% Step 1: Define the symblic variables

%

syms g k t y

%

% Step 2: Write the formula for y = f(t)

%

y = (g/k) * t - (g/k^2) * (1 - exp(-k * t));

%

% Step 3: Determine the velocity

%

v = diff(y,t);

%

% Step 4: Determine the acceleration

%

12.3 Free fall 277

a = diff(v,t);
%
% Step 5: Print the v and a formulas and compare with
% the published results
%
v, a
%
% Step 6: Determine a from published formula and v.
%
a2 = g - k * v;
% Step 7: Simplify to somplest form
a2 = simple(a2)
%
% Step 6: Stop. REMARK: Results compare exactly. The
% results printed in the command window after executing
% this script are as follows:
% v = g/k-g/k*exp(-k*t)
% a = g*exp(-k*t)
% a2 = g/exp(k*t)
% These results verify the conclusion that the published
% formulas are correct.
%

Let us next consider an approximate method for solving the linear-friction case.
This procedure is something you could have implemented if you didn’t have
the exact solution. More on numerical methods is provided in the last chapter
of this book.

The equations for free-fall acceleration and velocity are differential equations.
The following approximate analysis of a differential equation is called finite-
differences. Let us consider the problem of free fall with linear friction (i.e.,
air drag that is linearly proportional to the speed of free fall). The formula
(or equation) for this problem and its exact solution are given above. In the
following analysis a script to solve this problem by the approximate method
described below was written and executed for the same interval of time. This
is described next. Then the approximate solution is compared with the exact
solution graphically. For a unit mass, the formula that describes the velocity
of free fall from rest with air resistance proportional to the linear power of
velocity can be written as follows:

dv

dt
= g − kv,

Let us approximate this equation by inverting the fundamental theorem of
differential calculus, i.e., let us re-write it in terms of the definition of what a

278 CHAPTER 12: Dynamical Systems

derivative is before the appropriate limit is taken. What is meant by this is to
write this equation for a small interval of time �t = t (n + 1) − t (n) as follows:

dv

dt
≈ v(n + 1) − v(n)

�t
= g − k

(
v(n + 1) + v(n)

2

)
,

where the value identified by the integer n is the value of v at the beginning
of the time interval, i.e., v(n) at t (n). The value identified by n + 1 is the value
of v at the end of the time interval, i.e., v(n + 1) at t (n + 1). This is an initial-
value problem; hence, the value of v is known at t (n). Knowing v(n) at t (n),
and by specifying t (n + 1), the value v(n + 1) can be calculated by solving the
finite-difference equation for v(n + 1) given above. The solution will depend
on the size of �t . This formula gives us v(n + 1). We next need to solve for
y(n + 1) from the definition of v (viz., an approximate form of dy/dt). The
average value of v over the interval of time, �t , can be written in terms of y as
follows:

dy

dt
≈ y(n + 1) − y(n)

�t
= v(n + 1) + v(n)

2
.

Rearranging this equation, we get a formula for y(n + 1) in terms of v(n + 1),
v(n), y(n) and �t . Given the initial condition, i.e., y(n) and v(n) at t (n), we
compute v(n + 1) with the first difference equation followed by computing
y(n + 1) with the last equation. Note that the new values become the initial con-
dition for the next time step. This procedure is done repeatedly until the overall
time duration of interest is reached (in this case this is t = 5). The script file
to implement this procedure is given next. The m − f ile is executed and the
results plotted on the same graph with the exact solution. As shown, the com-
parison is remarkable. This is not always the case when approximate methods
are used. The comparison is, of course, encouraging because we do not usually
have exact results and need to resort to numerical approximations in our work.

The script file applied to examine the difference between the approximate
method and the exact result is as follows:

%
% Approximate and exact solution comparison of
% free fall with linear friction for t = 0 to 5.
%
% Script by D. T. V. September 2006.
% Revised by D.T.V. 2008/2016/2018.
%
% Step 1: Specified constants
%
k = 0.2;
g = 9.81;

12.3 Free fall 279

%
% Step 2: Selection of time step for approximate solution
% dt = t(n+1) - t(n)
dt = 0.01;
%
% Step 3: Initial condition
%
t(1) = 0.;
v(1) = 0.;
y(1) = 0.;
%
% Step 3: Sequential implementation of the approximate
% solution method by repeating the procedure 500 times
% (using a for loop).
%
for n = 1:1:500

t(n+1) = t(n) + dt;
v(n+1) = (v(n) + dt * (g-0.5*k*v(n)))/(1.+dt*0.5*k);
y(n+1) = y(n) + dt * 0.5 * (v(n+1) + v(n));

end
%
% Step 4: Exact solution over the same interval of time:
%

ye = (g/k) * t - (g/(k^2)) * (1.-exp(-k*t));
%
% Step 5: Graphical comparison:
%
plot(t,y,’o’,t,ye)
title(’Comparison of numerics w/ exact results’)
xlabel(’ Time, t’)
ylabel(’ Distance of free fall from rest, y’)
%
% Step 6: Comparison of distance at t=5
%
disp(’ ’);
fprintf(’ y(t) = %f, ye(t) = %f at t = %f \n’,...

y(501),ye(501),t(501))
%
% Step 7: End of script by DTV.
%

In summary, the examination of the free fall problem illustrated the appli-
cation and the checking of formulas reported in the literature. In addition,
an approximate method was applied to solve the same problem to illustrate

280 CHAPTER 12: Dynamical Systems

FIGURE 12.5
Comparison of free-fall distance. speed: Exact is the line, circles are for the finite-difference approximate
solution.

the application of a method that would be necessary if exact formulas were
not found. Finally, the approximate method that was applied can certainly
be improved by utilizing the ordinary differential equation solvers available
in MATLAB. Examples of this type of procedure are given in the last chapter.
Other examples are in the help manuals in MATLAB that are found via the
question mark (?) in the toolbar on the desktop window system (as already
mentioned). (See Fig. 12.5.)

12.4 PROJECTILE WITH FRICTION

Let us examine the projectile problem again. In this case let us examine the
effect of air resistance on the flight of a projectile like a golf ball. For a unit
mass, the formulas that describe the trajectory of a projectile in a gravitational
field, g, with air resistance in the opposite direction of motion (that is propor-
tional to the speed of the projectile in the direction of motion squared) are as
follows:

u = dx/dt,

v = dy/dt,

du/dt = −ku ∗
√

u2 + v2,

dv/dt = −kv ∗
√

u2 + v2 − g.

dv/dt = −kv ∗
√

u2 + v2 − g.

The location of the projectile (e.g., a golf ball) is initially at x = 0, y = 0. It is
launched at a speed Vs in the direction of angle θ as measured from the hori-

12.4 Projectile with friction 281

zontal. The coordinate x is in the horizontal direction parallel to the ground.
The coordinate y is in the direction perpendicular to x pointing towards the
sky. Hence, the gravitational acceleration is in the negative y direction. For a
given launch speed and direction, we wish to estimate the range (or the dis-
tance) the ball travels in the x direction when it first hits the ground. To do this
we shall approximate the four equations in a similar way that we treated the
free falling object problem in the last section.

The solution method is given in detail in the script provided at the end of this
paragraph. It was saved with the name golf.m.

%
% "The Golf ball problem"
% Numerical computation of the trajectory of a
% projectile launched at an angle theta with
% a specified launch speed. They are:
% theta = launch angle in degrees.
% Vs = launch speed.
%
% Script by D. T. V. September 2006.
% Revised by D.T.V. 2008/2016/2018.
%
% Equations of motion:
% u = dx/dt. v = dy/dt. g is in the opposite
% direction of y. x = y = 0 is the location of
% the tee. k is the coefficient of air drag. It
% is assumed to be constant. Friction is assumed
% to be proportional to the speed of the ball
% squared and it acts in the opposite direction
% of the direction of motion of the ball. The
% components of acceleration are thus:
% du/dt = - [k (u^2 + v^2) * u/sqrt(u^2+v^2)].
% dv/dt = - [k (u^2 + v^2) * v/sqrt(u^2+v^2)] - g.
%
% INPUT DATA
% Specified constants:

k = 0.02;
g = 9.81;
dt = 0.01;

%
% Input the initial condition:
%
theta = input(’ Initial angle of launch: ’)
the = theta * pi/180.;
Vs = input(’ Initial speed of launch: ’)

282 CHAPTER 12: Dynamical Systems

u(1) = Vs * cos(the);
v(1) = Vs * sin(the);
% Launch pad location:
x(1) = 0.;
y(1) = 0.;
%
% Compute approximate solution of the trajectory
% of flight.
% Repeat up to 6000 time, i.e., until ball hits
% the ground.
%
for n=1:1:6000;

u(n+1) = u(n) ...
- dt * (k * sqrt(u(n)^2+v(n)^2) * u(n));
v(n+1) = v(n) ...
- dt * (k * sqrt(u(n)^2+v(n)^2) * v(n) + g);
x(n+1) = x(n) + u(n) * dt;
y(n+1) = y(n) + v(n) * dt;

% Determination of when the object hits ground:
if y(n+1) < 0

slope = (y(n+1) - y(n))/(x(n+1) - x(n));
b = y(n) - slope * x(n);
xhit = - b/slope;

plot(x,y)
fprintf(’ The length of the shot = %5.2f \n’, xhit)

end
% Once object hits terminate the computations with a break:

if y(n+1) < 0; break; end
end
%
% Graphical presentation of the results:
%
if y(n+1) > 0

plot(x,y)
end
% ------ End of golf-ball script by DTV

What is the optimum launch angle for k = 0.02? The answer to this question is
described next for the launch speed of 100. Note that the optimum angle is the
angle which gives the longest distance of travel (or greatest range). To compute
the optimum angle the following script was executed after the lines with the
input statements in the golf.m scripted were commented out by typing % at
the beginning of the two lines with the input commands. The two lines in
question were commented out as follows:

12.4 Projectile with friction 283

%

% In golf.m the following alterations were made

% prior to running this script!!!!!!

%

% % theta = input(’ Initial angle of launch: ’)

% % Vs = input(’ Initial speed of launch: ’)

%

% This script then finds the optimum angle for k = 0.2

% to compare with the zero friction case, which we know

% has the optimum launch angle of 45 degrees.

%

% Script by D. T. V. September 2006.

% Revised by D.T.V. 2008/2016/2018.

%

% Consider launch angles from 1 to 45 degrees

%

th = 1:1:45;

vs = 100; % Specified launch speed.

%

% Execute the modified golf.m file 45 times and save

% results for each executoion of golf.m

%

for i=1:45

theta = th(i)

golf % Execution of modified golf.m script.

xh(i) = xhit

thxh(i) = theta

end

% Find the maximum distance and the correponding index

[xmh,n] = max(xh)

% Determine the angle that the maximum distance occured.

opt_angle = thxh(n)

% Display the results

disp(’ optimum angle ’)

disp(opt_angle)

% REMARK: For this case the result is 30 degrees.

% End of script

The optimum angle of launch for the case of nonlinear friction was computed
and found to be equal to 30 degrees. Without friction it is 45 degrees. Hence,
it is not surprising that golfers launch their best drives at angles significantly
less than 45 degrees.

284 CHAPTER 12: Dynamical Systems

SUMMARY

In this chapter we examined three problems using some of the utilities in
MATLAB. We did the following:

■ We determined the shape of the deflection of a cantilever beam based on
a published formula in the engineering literature. Thus, we could use the
capability of MATLAB to do arithmetic with polynomials.

■ We examined the effect of friction on the free fall problem. In addition
to computing the distance and speed of free fall based on published for-
mulas, we checked the formulas with the symbolics tools and we also
solved the problem by an approximate method to illustrate the range of
possibilities at your disposal to solve technical problems.

■ We examined the projectile problem subjected to air resistance. We did
this by applying the same type of approximate method as we applied in
the free fall problem. We found that the optimum angle of launch with
friction taken into account is less than 45 degrees (the frictionless value).

EXERCISES

12.1 Reproduce the script for the exact solutions for the free fall problem
(called FFall.m) and execute it for a range of friction coefficients, e.g.,
k = 0.1 and 0.3.

12.2 Use the symbolics tools in the same way they were used to check the
formulas for the linear-friction case of free fall, to check the other two
cases.

12.3 Reproduce the golf.m (projectile script) and look at the effect of varying
the friction coefficient k. Look at k = 0.01 and 0.03. What influence does
friction have on the optimum angle for a launch speed of 100?

CHAPTER 13

Simulation

CONTENTS

Random number
generation 285
Seeding rand 286

Spinning coins.. 286
Rolling dice...... 287
Bacteria division 288

A random walk . 288
Traffic flow....... 290
Normal
(Gaussian)
random
numbers 293
Summary 293
Exercises 294

THE OBJECTIVE OF THIS CHAPTER IS TO INTRODUCE YOU
TO:

■ Simulation of “real-life” events.

Simulation is an area of application where computers have come into their
own. A simulation is a computer experiment which mirrors some aspect of the
real world that appears to be based on random processes, or is too compli-
cated to understand properly. (Whether events can be really random is actually
a philosophical or theological question.) Some examples are: radio-active de-
cay, rolling dice, bacteria division and traffic flow. The essence of a simulation
program is that the programmer is unable to predict beforehand exactly what
the outcome of the program will be, which is true to the event being simu-
lated. For example, when you spin a coin, you do not know for sure what the
result will be.

13.1 RANDOM NUMBER GENERATION

Random events are easily simulated in MATLAB with the function rand, which
we have briefly encountered already. By default, rand returns a uniformly dis-
tributed pseudo-random number in the range 0 ≤ rand < 1. (A computer cannot
generate truly random numbers, but they can be practically unpredictable.)
rand can also generate row or column vectors, e.g., rand(1,5) returns a row
vector of five random numbers (1 row, 5 column) as shown:

0.9501 0.2311 0.6068 0.4860 0.8913

If you generate more random numbers during the same MATLAB session, you
will get a different sequence each time, as you would expect. However, each
time you start a MATLAB session, the random number sequence begins at
the same place (0.9501), and continues in the same way. This is not true to

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00020-8
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

285

https://doi.org/10.1016/B978-0-08-102997-8.00020-8

286 CHAPTER 13: Simulation

life, as every gambler knows. To produce a different sequence each time you
start a session, rand can be initially seeded in a different way each time you
start.

13.1.1 Seeding rand

The random number generator rand can be seeded with the statement

rand(’state’, n)

where n is any integer. (By default, n is set to 0 when a MATLAB session starts.)
This is useful if you want to generate the same random sequence every time a
script runs, e.g., in order to debug it properly. Note that this statement does
not generate any random numbers; it only initializes the generator.

However, you can also arrange for n to be different each time you start MATLAB
by using the system time. The function clock returns the date and time in
a six-element vector with seconds to two decimal places, so the expression
sum(100*clock) never has the same value (well, hardly ever). You can use it to
seed rand as follows:

�rand(’state’, sum(100*clock))

�rand(1,7)

ans =

0.3637 0.2736 0.9910 0.3550 0.8501 0.0911 0.4493

�rand(’state’, sum(100*clock))

�rand(1,7)

ans =

0.9309 0.2064 0.7707 0.7644 0.2286 0.7722 0.5315

Theoretically rand can generate over 21492 numbers before repeating itself.

13.2 SPINNING COINS

When a fair (unbiased) coin is spun, the probability of getting heads or tails is
0.5 (50%). Since a value returned by rand is equally likely to anywhere in the
interval (0, 1) we can represent heads, say, with a value less than 0.5, and tails
otherwise.

Suppose an experiment calls for a coin to be spun 50 times, and the results
recorded. In real life you may need to repeat such an experiment a number of

13.3 Rolling dice 287

times; this is where computer simulation is handy. The following script simu-
lates spinning a coin 50 times:

for i = 1:50
r = rand;
if r < 0.5

fprintf(’H’)
else

fprintf(’T’)
end

end
fprintf(’\n’) % newline

Here is the output from two sample runs:

THHTTHHHHTTTTTHTHTTTHHTHTTTHHTTTTHTTHHTHHHHHHTTHTT
THTHHHTHTHHTTHTHTTTHHTTTTTTTHHHTTTHTHHTHHHHTTHTHTT

Note that it should be impossible in principle to tell from the output alone
whether the experiment was simulated or real (if the random number genera-
tor is sufficiently random).

Can you see why it would be wrong to code the if part of the coin simulation
like this:

if rand < 0.5 fprintf(’H’), end
if rand >= 0.5 fprintf(’T’), end

The basic principle is that rand should be called only once for each ‘event’ being
simulated. Here the single event is spinning a coin, but rand is called twice.
Also, since two different random numbers are generated, it is quite possible
that both logical expressions will be true, in which case ‘H’ and ‘T’ will both be
displayed for the same coin!

13.3 ROLLING DICE

When a fair dice is rolled, the number uppermost is equally likely to be any
integer from 1 to 6. We saw in Counting random numbers (Chapter 5) how
to use rand to simulate this. The following statement generates a vector with
10 random integers in the range 1–6:

d = floor(6 * rand(1,10) + 1)

Here are the results of two such simulations:

288 CHAPTER 13: Simulation

2 1 5 5 6 3 4 5 1 1
4 5 1 3 1 3 5 4 6 6

We can do statistics on our simulated experiment, just as if it were a real one.
For example, we could estimate the mean of the number obtained when the
dice is rolled 100 times, and the probability of getting a six, say.

13.4 BACTERIA DIVISION

If a fair coin is spun, or a fair dice is rolled, the different events (e.g., getting
‘heads’, or a 6) happen with equal likelihood. Suppose, however, that a certain
type of bacteria divides (into two) in a given time interval with a probability
of 0.75 (75%), and that if it does not divide, it dies. Since a value generated
by rand is equally likely to be anywhere between 0 and 1, the chances of it
being less than 0.75 are precisely 75%. We can therefore simulate this situation
as follows:

r = rand;
if r < 0.75

disp(’I am now we’)
else

disp(’I am no more’)
end

Again, the basic principle is that one random number should be generated for
each event being simulated. The single event here is the bacterium’s life history
over the time interval.

13.5 A RANDOMWALK

A seriously short-sighted sailor has lost his contact lenses returning from a
symphony concert, and has to negotiate a jetty to get to his ship. The jetty is 50
paces long and 20 wide. He is in the middle of the jetty at the quay-end, point-
ing toward the ship. Suppose at every step he has a 60% chance of stumbling
blindly toward the ship, but a 20% chance of lurching to the left or right (he
manages to be always facing the ship). If he reaches the ship-end of the jetty,
he is hauled aboard by waiting mates.

The problem is to simulate his progress along the jetty, and to estimate his
chances of getting to the ship without falling into the sea. To do this correctly,
we must simulate one random walk along the jetty, find out whether or not he
reaches the ship, and then repeat this simulation 1000 times, say (if we have
a fast enough computer!). The proportion of simulations that end with the
sailor safely in the ship will be an estimate of his chances of making it to the

13.5 A random walk 289

ship. For a given walk we assume that if he has not either reached the ship or
fallen into the sea after, say, 10000 steps, he dies of thirst on the jetty.

To represent the jetty, we set up co-ordinates so that the x-axis runs along the
middle of the jetty with the origin at the quay-end. x and y are measured in
steps. The sailor starts his walk at the origin each time. The structure plan and
script are as follows:

1. Initialize variables, including number of walks n

2. Repeat n simulated walks down the jetty:
Start at the quay-end of the jetty
While still on the jetty and still alive repeat:

Get a random number R for the next step
If R < 0.6 then

Move forward (to the ship)
Else if R < 0.8 then

Move port (left)
Else

Move starboard
If he got to the ship then

Count that walk as a success
3. Compute and print estimated probability of reaching the ship
4. Stop.

% random walk
n = input(’Number of walks: ’);
nsafe = 0; % number of times he makes it

for i = 1:n
steps = 0; % each new walk ...
x = 0; % ... starts at the origin
y = 0;

while x <= 50 & abs(y) <= 10 & steps < 1000
steps = steps + 1; % that’s another step
r = rand; % random number for that step
if r < 0.6 % which way did he go?
x = x + 1; % maybe forward ...

elseif r < 0.8
y = y + 1; % ... or to port ...

else
y = y - 1; % ... or to starboard

end;
end;

290 CHAPTER 13: Simulation

if x > 50
nsafe = nsafe + 1; % he actually made it this time!

end;

end;

prob = 100 * nsafe / n;
disp(prob);

A sample run of 100 walks gave an 93% probability of reaching the ship.

You can speed up the script by about 20% if you generate a vector of 1 000
random numbers, say, at the start of each walk (with r = rand(1,1000);) and
then reference elements of the vector in the while loop, e.g.,

if r(steps) < 0.6 ...

13.6 TRAFFIC FLOW

A major application of simulation is in modeling the traffic flow in large cities,
in order to test different traffic light patterns before inflicting them on the real
traffic. In this example we look at a very small part of the problem: how to
simulate the flow of a single line of traffic through one set of traffic lights. We
make the following assumptions (you can make additional or different ones if
like):

1. Traffic travels straight, without turning.
2. The probability of a car arriving at the lights in a particular second is in-

dependent of what happened during the previous second. This is called
a Poisson process. This probability (call it p) may be estimated by watch-
ing cars at the intersection and monitoring their arrival pattern. In this
simulation we take p = 0.3.

3. When the lights are green, assume the cars move through at a steady rate
of, say, eight every ten seconds.

4. In the simulation, we will take the basic time period to be ten seconds,
so we want a display showing the length of the queue of traffic (if any)
at the lights every ten seconds.

5. We will set the lights red or green for variable multiples of ten seconds.

The situation is modeled with a script file traffic.m which calls three func-
tion files: go.m, stop.m, and prq.m. Because the function files need access to a
number of base workspace variables created by traffic.m, these variables are
declared global in traffic.m, and in all three function files.

13.6 Traffic flow 291

In this example the lights are red for 40 seconds (red = 4) and green for 20 sec-
onds (green = 2). The simulation runs for 240 seconds (n = 24).

The script, traffic.m, is as follows:

clc
clear % clear out any previous garbage!
global CARS GTIMER GREEN LIGHTS RED RTIMER T

CARS = 0; % number of cars in queue
GTIMER = 0; % timer for green lights
GREEN = 2; % period lights are green
LIGHTS = ’R’; % color of lights
n = 48; % number of 10-sec periods
p = 0.3; % probability of a car arriving
RED = 4; % period lights are red
RTIMER = 0; % timer for red lights

for T = 1:n % for each 10-sec period

r = rand(1,10); % 10 seconds means 10 random numbers
CARS = CARS + sum(r < p); % cars arriving in 10 seconds

if LIGHTS == ’G’
go % handles green lights

else
stop % handles red lights

end;

end;

The function files go.m, stop.m and prq.m (all separate M-files) are as follows:

% --
function go
global CARS GTIMER GREEN LIGHTS
GTIMER = GTIMER + 1; % advance green timer
CARS = CARS - 8; % let 8 cars through

if CARS < 0 % ... there may have been < 8
CARS = 0;

end;

prq; % display queue of cars

292 CHAPTER 13: Simulation

if GTIMER == GREEN % check if lights need to change
LIGHTS = ’R’;
GTIMER = 0;

end;

% --
function stop
global LIGHTS RED RTIMER
RTIMER = RTIMER + 1; % advance red timer
prq; % display queue of cars

if RTIMER == RED % check if lights must be changed
LIGHTS = ’G’;
RTIMER = 0;

end;

% --
function prq
global CARS LIGHTS T
fprintf(’%3.0f ’, T); % display period number

if LIGHTS == ’R’ % display color of lights
fprintf(’R ’);

else
fprintf(’G ’);

end;

for i = 1:CARS % display * for each car
fprintf(’*’);

end;

fprintf(’\n’) % new line

Typical output looks like this:

1 R ****
2 R ********
3 R ***********
4 R **************
5 G **********
6 G *****
7 R ********
8 R *************
9 R ****************

13.7 Normal (Gaussian) random numbers 293

10 R *******************
11 G **************
12 G **********
13 R **************
14 R *****************
15 R ********************
16 R ************************
17 G **********************
18 G ****************
19 R ******************
20 R **********************
21 R ************************
22 R ******************************
23 G **************************
24 G ***********************

From this particular run it seems that a traffic jam is building up, although
more and longer runs are needed to see if this is really so. In that case, one can
experiment with different periods for red and green lights in order to get an
acceptable traffic pattern before setting the real lights to that cycle. Of course,
we can get closer to reality by considering two-way traffic, and allowing cars
to turn in both directions, and occasionally to break down, but this program
gives the basic ideas.

13.7 NORMAL (GAUSSIAN) RANDOM NUMBERS

The function randn generates Gaussian or normal random numbers (as opposed
to uniform) with a mean (μ) of 0 and a variance (σ 2) of 1.

■ Generate 100 normal random numbers r with randn(1,100) and draw
their histogram. Use the functions mean(r) and std(r) to find their mean
and standard deviation (σ).

■ Repeat with 1000 random numbers. The mean and standard deviation
should be closer to 0 and 1 this time.

The functions rand and randn have separate generators, each with its own seed.

SUMMARY

■ A simulation is a computer program written to mimic a “real-life” situa-
tion which is apparently based on chance.

■ The pseudo-random number generator rand returns uniformly dis-
tributed random numbers in the range [0, 1), and is the basis of the
simulations discussed in this chapter.

294 CHAPTER 13: Simulation

■ randn generates normally distributed (Gaussian) random numbers.
■ rand(’state’, n) enables the user to seed rand with any integer n. A seed

may be obtained from clock, which returns the system clock time.
randn may be seeded (independently) in a similar way.

■ Each independent event being simulated requires one and only one ran-
dom number.

EXERCISES

13.1 Write some statements to simulate spinning a coin 50 times using 0-1
vectors instead of a for loop. Hints: generate a vector of 50 random
numbers, set up 0-1 vectors to represent the heads and tails, and use
double and char to display them as a string of Hs and Ts.

13.2 In a game of Bingo the numbers 1 to 99 are drawn at random from a
bag. Write a script to simulate the draw of the numbers (each number
can be drawn only once), printing them ten to a line.

13.3 Generate some strings of 80 random alphabetic letters (lowercase only).
For fun, see how many real words, if any, you can find in the strings.

13.4 A random number generator can be used to estimate π as follows (such
a method is called a Monte Carlo method). Write a script which gener-
ates random points in a square with sides of length 2, say, and which
counts what proportion of these points falls inside the circle of unit ra-
dius that fits exactly into the square. This proportion will be the ratio
of the area of the circle to that of the square. Hence estimate π . (This is
not a very efficient method, as you will see from the number of points
required to get even a rough approximation.)

13.5 Write a script to simulate the progress of the short-sighted student in
Chapter 16 (Markov Processes). Start him at a given intersection, and
generate a random number to decide whether he moves toward the
internet cafe or home, according to the probabilities in the transition
matrix. For each simulated walk, record whether he ends up at home
or in the cafe. Repeat a large number of times. The proportion of walks
that end up in either place should approach the limiting probabilities
computed using the Markov model described in Chapter 16. Hint: if
the random number is less than 2/3 he moves toward the cafe (unless
he is already at home or in the cafe, in which case that random walk
ends), otherwise he moves toward home.

13.6 The aim of this exercise is to simulate bacteria growth.
Suppose that a certain type of bacteria divides or dies according to the
following assumptions:

Exercises 295

(a) during a fixed time interval, called a generation, a single bacterium
divides into two identical replicas with probability p;

(b) if it does not divide during that interval, it dies;
(c) the offspring (called daughters) will divide or die during the next

generation, independently of the past history (there may well be
no offspring, in which case the colony becomes extinct).

Start with a single individual and write a script which simulates a num-
ber of generations. Take p = 0.75. The number of generations which you
can simulate will depend on your computer system. Carry out a large
number (e.g. 100) of such simulations. The probability of ultimate ex-
tinction, p(E), may be estimated as the proportion of simulations that
end in extinction. You can also estimate the mean size of the nth gener-
ation from a large number of simulations. Compare your estimate with
the theoretical mean of (2p)n.
Statistical theory shows that the expected value of the extinction prob-
ability p(E) is the smaller of 1, and (1 − p)/p. So for p = 0.75, p(E)

is expected to be 1/3. But for p ≤ 0.5, p(E) is expected to be 1, which
means that extinction is certain (a rather unexpected result). You can
use your script to test this theory by running it for different values of p,
and estimating p(E) in each case.

13.7 Brian Hahn (the original author of this book) is indebted to a colleague,
Gordon Kass, for suggesting this problem.
Dribblefire Jets Inc. make two types of aeroplane, the two-engined DFII,
and the four-engined DFIV. The engines are terrible and fail with prob-
ability 0.5 on a standard flight (the engines fail independently of each
other). The manufacturers claim that the planes can fly if at least half of
their engines are working, i.e. the DFII will crash only if both its engines
fail, while the DFIV will crash if all four, or if any three engines fail.
You have been commissioned by the Civil Aviation Board to ascertain
which of the two models is less likely to crash. Since parachutes are ex-
pensive, the cheapest (and safest!) way to do this is to simulate a large
number of flights of each model. For example, two calls of Math.random
could represent one standard DFII flight: if both random numbers are
less than 0.5, that flight crashes, otherwise it doesn’t. Write a script
which simulates a large number of flights of both models, and estimates
the probability of a crash in each case. If you can run enough simula-
tions, you may get a surprising result. (Incidentally, the probability of
n engines failing on a given flight is given by the binomial distribution,
but you do not need to use this fact in the simulation.)

13.8 Two players, A and B, play a game called Eights. They take it in turns
to choose a number 1, 2 or 3, which may not be the same as the last
number chosen (so if A starts with 2, B may only choose 1 or 3 at the
next move). A starts, and may choose any of the three numbers for the
first move. After each move, the number chosen is added to a common
running total. If the total reaches 8 exactly, the player whose turn it

296 CHAPTER 13: Simulation

was wins the game. If a player causes the total to go over 8, the other
player wins. For example, suppose A starts with 1 (total 1), B chooses 2
(total 3), A chooses 1 (total 4) and B chooses 2 (total 6). A would like
to play 2 now, to win, but he can’t because B cunningly played it on the
last move, so A chooses 1 (total 7). This is even smarter, because B is
forced to play 2 or 3, making the total go over 8 and thereby losing.
Write a script to simulate each player’s chances of winning, if they al-
ways play at random.

13.9 If r is a normal random number with mean 0 and variance 1 (as gen-
erated by randn), it can be transformed into a random number X with
mean μ and standard deviation σ by the relation

X = σr + μ.

In an experiment a Geiger counter is used to count the radio-active
emissions of cobalt 60 over a 10-second period. After a large number
of such readings are taken, the count rate is estimated to be normally
distributed with a mean of 460 and a standard deviation of 20.

1. Simulate such an experiment 200 times by generating 200 ran-
dom numbers with this mean and standard deviation. Plot the
histogram (use 10 bins).

2. Repeat a few times to note how the histogram changes each time.
13.10 Radio-active carbon 11 has a decay-rate k of 0.0338 per minute, i.e.

a particular C11 atom has a 3.38% chance of decaying in any one
minute.
Suppose we start with 100 such atoms. We would like to simulate their
fate over a period of 100 minutes, say. We want to end up with a bar
graph showing how many atoms remain undecayed after 1, 2, . . . , 100
minutes.
We need to simulate when each of the 100 atoms decays. This can be
done, for each atom, by generating a random number r for each of the
100 minutes, until either r > k (that atom decays), or the 100 minutes
is up. If the atom decayed at time t < 100, increment the frequency
distribution f (t) by 1. f (t) will be the number of atoms decaying at
time t minutes.
Now convert the number f (t) decaying each minute to the number
R(t) remaining each minute. If there are n atoms to start with, after one
minute, the number R(1) remaining will be n − f (1), since f (1) is the
number decaying during the first minute. The number R(2) remaining
after two minutes will be n − f (1) − f (2). In general, the number re-
maining after t minutes will be (in MATLAB notation)

R(t) = n - sum(f(1:t))

Exercises 297

FIGURE 13.1
Radio-active decay of carbon 11: simulated and theoretical.

Write a script to compute R(t) and plot its bar graph. Superimpose on
the bar graph the theoretical result, which is

R(t) = 100 exp−kt .

Typical results are shown in Fig. 13.1.

CHAPTER 14

Introduction to Numerical Methods

CONTENTS

Equations 299
Newton’s method... 299
Complex roots301
The Bisection
method 301
fzero 303
roots 303

Integration....... 304
The Trapezoidal rule304
Simpson’s rule 305
quad..................... 306

Numerical
differentiation .. 306
diff..................... 307

First-order
differential
equations 308
Euler’s method 308
Example: Bacteria
growth 309
Alternative
subscript notation .. 311
A predictor-
corrector method... 312

Linear ordinary
differential
equations
(LODEs)........... 313
Runge-Kutta
methods.......... 313
A single differential
equation............... 313
Systems of
differential
equations: Chaos ... 314

THE OBJECTIVES OF THIS CHAPTER ARE TO INTRODUCE
NUMERICAL METHODS FOR:

■ Solving equations.
■ Evaluating definite integrals.
■ Solving systems of ordinary differential equations.
■ Solving a parabolic partial differential equation.

A major scientific use of computers is in finding numerical solutions to math-
ematical problems which have no analytical solutions (i.e., solutions which
may be written down in terms of polynomials and standard mathematical
functions). In this chapter we look briefly at some areas where numerical meth-
ods have been highly developed, e.g., solving non-linear equations, evaluating
integrals, and solving differential equations.

14.1 EQUATIONS

In this section we consider how to solve equations in one unknown numeri-
cally. The usual way of expressing the problem is to say that we want to solve
the equation f (x) = 0, i.e., we want to find its root (or roots). This process
is also described as finding the zeros of f (x). There is no general method for
finding roots analytically for an arbitrary f (x).

14.1.1 Newton’s method

Newton’s method is perhaps the easiest numerical method to implement for
solving equations, and was introduced briefly in earlier chapters. It is an iter-
ative method, meaning that it repeatedly attempts to improve an estimate of
the root. If xk is an approximation to the root, we can relate it to the next
approximation xk+1 using the right-angle triangle in Fig. 14.1:

f ′(xk) = f (xk) − 0

xk − xk+1
,

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00021-X
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

299

https://doi.org/10.1016/B978-0-08-102997-8.00021-X

300 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.1
Newton’s method.

Passing additional
parameters to an
ODE solver............ 317

A partial
differential
equation.......... 318
Heat conduction 318

Complex
variables and
conformal
mapping.......... 322
Joukowski airfoil.... 322

Other numerical
methods.......... 323
Summary 325
Exercises 325

where f ′(x) is df/dx. Solving for xk+1 gives

xk+1 = xk − f (xk)

f ′(xk)
.

A structure plan to implement Newton’s method is:

1. Input starting value x0 and required relative error e

2. While relative error |(xk − xk−1)/xk| ≥ e repeat up to k = 20, say:
xk+1 = xk − f (xk)/f

′(xk)

Print xk+1 and f (xk+1)

3. Stop.

It is necessary to limit step 2 since the process may not converge.

A script using Newton’s method (without the subscript notation) to solve the
equation x3 + x − 3 = 0 is given in Chapter 10. If you run it you will see that
the values of x converge rapidly to the root.

As an exercise, try running the script with different starting values of x0 to see
whether the algorithm always converges.

If you have a sense of history, use Newton’s method to find a root of x3 − 2x −
5 = 0. This is the example used when the algorithm was first presented to the
French Academy.

Also try finding a non-zero root of 2x = tan(x), using Newton’s method. You
might have some trouble with this one. If you do, you will have discovered
the one serious problem with Newton’s method: it converges to a root only if
the starting guess is ‘close enough’. Since ‘close enough’ depends on the nature
of f (x) and on the root, one can obviously get into difficulties here. The only
remedy is some intelligent trial-and-error work on the initial guess—this is

14.1 Equations 301

FIGURE 14.2
f (x) = 2x − tan(x).

made considerably easier by sketching f (x) or plotting it with MATLAB (see
Fig. 14.2).

If Newton’s method fails to find a root, the Bisection method, discussed below,
can be used.

14.1.1.1 Complex roots

Newton’s method can also find complex roots, but only if the starting guess is
complex. Use the script in Chapter 10 to find a complex root of x2 + x + 1 = 0.
Start with a complex value of 1 + i say, for x. Using this starting value for x

gives the following output (if you replace disp([x f(x)]) in the script with
disp(x)):

0.0769 + 0.6154i
-0.5156 + 0.6320i
-0.4932 + 0.9090i
-0.4997 + 0.8670i
-0.5000 + 0.8660i
-0.5000 + 0.8660i
Zero found

Since complex roots occur in complex conjugate pairs, the other root is −0.5 −
0.866i.

14.1.2 The Bisection method

Consider again the problem of solving the equation f (x) = 0, where

f (x) = x3 + x − 3.

302 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.3
The Bisection method.

We attempt to find by inspection, or trial-and-error, two values of x, call them
xL and xR , such that f (xL) and f (xR) have different signs, i.e., f (xL)f (xR) < 0.
If we can find two such values, the root must lie somewhere in the interval
between them, since f (x) changes sign on this interval (see Fig. 14.3). In this
example, xL = 1 and xR = 2 will do, since f (1) = −1 and f (2) = 7. In the
Bisection method, we estimate the root by xM , where xM is the midpoint of
the interval [xL, xR], i.e.,

xM = (xL + xR)/2. (14.1)

Then if f (xM) has the same sign as f (xL), as drawn in the figure, the root
clearly lies between xM and xR . We must then redefine the left-hand end of
the interval as having the value of xM , i.e., we let the new value of xL be xM .
Otherwise, if f (xM) and f (xL) have different signs, we let the new value of xR

be xM , since the root must lie between xL and xM in that case. Having redefined
xL or xR , as the case may be, we bisect the new interval again according to
Equation (14.1) and repeat the process until the distance between xL and xR

is as small as we please.

The neat thing about this method is that, before starting, we can calculate how
many bisections are needed to obtain a certain accuracy, given initial values of
xL and xR . Suppose we start with xL = a, and xR = b. After the first bisection
the worst possible error (E1) in xM is E1 = |a − b|/2, since we are estimating
the root as being at the midpoint of the interval [a, b]. The worst that can
happen is that the root is actually at xL or xR , in which case the error is E1.
Carrying on like this, after n bisections the worst possible error En is given
by En = |a − b|/2n. If we want to be sure that this is less than some specified
error E, we must see to it that n satisfies the inequality |a − b|/2n < E, i.e.,

n >
log(|a − b|/E)

log(2)
(14.2)

14.1 Equations 303

Since n is the number of bisections, it must be an integer. The smallest integer
n that exceeds the right-hand side of Inequality (14.2) will do as the maximum
number of bisections required to guarantee the given accuracy E.

The following scheme may be used to program the Bisection method. It will
work for any function f (x) that changes sign (in either direction) between the
two values a and b, which must be found beforehand by the user.

1. Input a, b and E

2. Initialize xL and xR

3. Compute maximum bisections n from Inequality (14.2)
4. Repeat n times:

Compute xM according to Equation (14.1)
If f (xL)f (xM) > 0 then

Let xL = xM

otherwise
Let xR = xM

5. Display root xM

6. Stop.

We have assumed that the procedure will not find the root exactly; the chances
of this happening with real variables are infinitesimal.

The main advantage of the Bisection method is that it is guaranteed to find
a root if you can find two starting values for xL and xR between which the
function changes sign. You can also compute in advance the number of bisec-
tions needed to attain a given accuracy. Compared to Newton’s method it is
inefficient. Successive bisections do not necessarily move closer to the root, as
usually happens with Newton’s method. In fact, it is interesting to compare the
two methods on the same function to see how many more steps the Bisection
method requires than Newton’s method. For example, to solve the equation
x3 + x − 3 = 0, the Bisection method takes 21 steps to reach the same accuracy
as Newton’s in five steps.

14.1.3 fzero

The MATLAB function fzero(@f, a) finds the zero nearest to the value a of the
function f represented by the function f.m.

Use it to find a zero of x3 + x − 3.

fzero doesn’t appear to be able to find complex roots.

14.1.4 roots

The MATLAB function M-file roots(c) finds all the roots (zeros) of the poly-
nomial with coefficients in the vector c. See help for details.

304 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.4
The Trapezoidal rule.

Use it to find a zero of x3 + x − 3.

14.2 INTEGRATION

Although most ‘respectable’ mathematical functions can be differentiated ana-
lytically, the same cannot be said for integration. There are no general rules for
integrating, as there are for differentiating. For example, the indefinite integral
of a function as simple as e−x2

cannot be found analytically. We therefore need
numerical methods for evaluating integrals.

This is actually quite easy, and depends on the fact that the definite integral of
a function f (x) between the limits x = a and x = b is equal to the area under
f (x) bounded by the x-axis and the two vertical lines x = a and x = b. So all
numerical methods for integrating simply involve more or less ingenious ways
of estimating the area under f (x).

14.2.1 The Trapezoidal rule

The Trapezoidal (or Trapezium) rule is fairly simple to program. The area un-
der f (x) is divided into vertical panels each of width h, called the step-length.
If there are n such panels, then nh = b − a, i.e., n = (b − a)/h. If we join the
points where successive panels cut f (x), we can estimate the area under f (x)

as the sum of the area of the resulting trapezia (see Fig. 14.4). If we call this
approximation to the integral S, then

S = h

2

[
f (a) + f (b) + 2

n−1∑
i=1

f (xi)

]
, (14.3)

14.2 Integration 305

where xi = a + ih. Equation (14.3) is the Trapezoidal rule, and provides an
estimate for the integral

∫ b

a

f (x)dx.

Here is a function to implement the Trapezoidal rule:

function y = trap(fn, a, b, h)
n = (b-a)/h;
x = a + [1:n-1]*h;
y = sum(feval(fn, x));
y = h/2*(feval(fn, a) + feval(fn, b) + 2*y);

Note:

1. Since the summation in the rule is implemented with a vectorized for-
mula rather than a for loop (to save time), the function to be integrated
must use array operators where appropriate in its M-file implementation.

2. The user must choose h in such a way that the number of steps n will be
an integer—a check for this could be built in.

As an exercise, integrate f (x) = x3 between the limits 0 and 4 (remember to
write x.^3 in the function M-file). Call trap as follows:

s = trap(@f, 0, 4, h);

With h = 0.1, the estimate is 64.04, and with h = 0.01 it is 64.0004 (the exact
integral is 64). You will find that as h gets smaller, the estimate gets more
accurate.

This example assumes that f (x) is a continuous function which may be eval-
uated at any x. In practice, the function could be defined at discrete points
supplied as results of an experiment. For example, the speed of an object v(t)

might be measured every so many seconds, and one might want to estimate
the distance traveled as the area under the speed-time graph. In this case, trap
would have to be changed by replacing fn with a vector of function values.
This is left as an exercise for the curious. Alternatively, you can use the MATLAB
function interp1 to interpolate the data. See help.

14.2.2 Simpson’s rule

Simpson’s rule is a method of numerical integration which is a good deal more
accurate than the Trapezoidal rule, and should always be used before you try

306 CHAPTER 14: Introduction to Numerical Methods

anything fancier. It also divides the area under the function to be integrated,
f (x), into vertical strips, but instead of joining the points f (xi) with straight
lines, every set of three such successive points is fitted with a parabola. To
ensure that there are always an even number of panels, the step-length h is
usually chosen so that there are 2n panels, i.e., n = (b − a)/(2h).

Using the same notation as above, Simpson’s rule estimates the integral as

S = h

3

[
f (a) + f (b) + 2

n−1∑
i=1

f (x2i) + 4
n∑

i=1

f (x2i−1)

]
. (14.4)

Coding this formula into a function M-file is left as an exercise.

If you try Simpson’s rule on f (x) = x3 between any limits, you will find rather
surprisingly, that it gives the same result as the exact mathematical solution.
This is a nice extra benefit of the rule: it integrates cubic polynomials exactly
(which can be proved).

14.2.3 quad

Not surprisingly, MATLAB has a function quad to carry out numerical integra-
tion, or quadrature as it is also called. See help.

You may think there is no point in developing our own function files to handle
these numerical procedures when MATLAB has its own. If you have got this far,
you should be curious enough to want to know how they work, rather than
treating them simply as ‘black boxes’.

14.3 NUMERICAL DIFFERENTIATION

The Newton quotient for a function f (x) is given by

f (x + h) − f (x)

h
, (14.5)

where h is ‘small’. As h tends to zero, this quotient approaches the first deriva-
tive, df/dx. The Newton quotient may therefore be used to estimate a deriva-
tive numerically. It is a useful exercise to do this with a few functions for
which you know the derivatives. This way you can see how small you can
make h before rounding errors cause problems. Such errors arise because ex-
pression (14.5) involves subtracting two terms that eventually become equal
when the limit of the computer’s accuracy is reached.

As an example, the following script uses the Newton quotient to estimate f ′(x)

for f (x) = x2 (which must be supplied as a function file f.m) at x = 2, for
smaller and smaller values of h (the exact answer is 4).

14.3 Numerical differentiation 307

h = 1;
x = 2;
format short e
for i = 1:20
nq = (f(x+h) - f(x))/h;
disp([h nq])
h = h / 10;

end

Output:

1 5
1.0000e-001 4.1000e+000
1.0000e-002 4.0100e+000
1.0000e-003 4.0010e+000
1.0000e-004 4.0001e+000
1.0000e-005 4.0000e+000
1.0000e-006 4.0000e+000
1.0000e-007 4.0000e+000
1.0000e-008 4.0000e+000
1.0000e-009 4.0000e+000
1.0000e-010 4.0000e+000
1.0000e-011 4.0000e+000
1.0000e-012 4.0004e+000
1.0000e-013 3.9968e+000
1.0000e-014 4.0856e+000
1.0000e-015 3.5527e+000
1.0000e-016 0
...

The results show that the best h for this particular problem is about 10−8. But
for h much smaller than this the estimate becomes totally unreliable.

Generally, the best h for a given problem can only be found by trial and er-
ror. Finding it can be a non-trivial exercise. This problem does not arise with
numerical integration, because numbers are added to find the area, not sub-
tracted.

14.3.1 diff

If x is a row or column vector

[x(1) x(2) ... x(n)]

then the MATLAB function diff(x) returns a vector of differences between ad-
jacent elements:

308 CHAPTER 14: Introduction to Numerical Methods

[x(2)-x(1) x(3)-x(2) ... x(n)-x(n-1)]

The output vector is one element shorter than the input vector.

In certain problems, diff is helpful in finding approximate derivatives, e.g., if
x contains displacements of an object every h seconds, diff(x)/h will be its
speed.

14.4 FIRST-ORDER DIFFERENTIAL EQUATIONS

The most interesting situations in real life that we may want to model, or
represent quantitatively, are usually those in which the variables change in
time (e.g., biological, electrical or mechanical systems). If the changes are con-
tinuous, the system can often be represented with equations involving the
derivatives of the dependent variables. Such equations are called differential
equations. The main aim of a lot of modeling is to be able to write down a
set of differential equations (DEs) that describe the system being studied as
accurately as possible. Very few DEs can be solved analytically, so once again,
numerical methods are required. We will consider the simplest method of nu-
merical solution in this section: Euler’s method (Euler rhymes with ‘boiler’).
We also consider briefly how to improve it.

14.4.1 Euler’s method

In general we want to solve a first-order DE (strictly an ordinary—ODE) of the
form

dy/dx = f (x, y), y(0) given.

Euler’s method for solving this DE numerically consists of replacing dy/dx

with its Newton quotient, so that the DE becomes

y(x + h) − y(x)

h
= f (x, y).

After a slight rearrangement of terms, we get

y(x + h) = y(x) + hf (x, y). (14.6)

Solving a DE numerically is such an important and common problem in sci-
ence and engineering that it is worth introducing some general notation at
this point. Suppose we want to integrate the DE over the interval x = a (a = 0
usually) to x = b. We break this interval up into m steps of length h, so

m = (b − a)/h

(this is the same as the notation used in the update process of Chapter 11,
except that dt used there has been replaced by the more general h here).

14.4 First-order differential equations 309

For consistency with MATLAB’s subscript notation, if we define yi as y(xi)

(the Euler estimate at the beginning of step i), where xi = (i − 1)h, then
yi+1 = y(x + h), at the end of step i. We can then replace Equation (14.6)
by the iterative scheme

yi+1 = yi + hf (xi, yi), (14.7)

where y1 = y(0). Recall from Chapter 11 that this notation enables us to gen-
erate a vector y which we can then plot. Note also the striking similarity
between Equation (14.7) and the equation in Chapter 11 representing an up-
date process. This similarity is no coincidence. Update processes are typically
modeled by DEs, and Euler’s method provides an approximate solution for
such DEs.

14.4.2 Example: Bacteria growth

Suppose a colony of 1000 bacteria is multiplying at the rate of r = 0.8 per hour
per individual (i.e. an individual produces an average of 0.8 offspring every
hour). How many bacteria are there after 10 hours? Assuming that the colony
grows continuously and without restriction, we can model this growth with
the DE

dN/dt = rN, N(0) = 1000, (14.8)

where N(t) is the population size at time t . This process is called exponential
growth. Equation (14.8) may be solved analytically to give the well-known for-
mula for exponential growth:

N(t) = N(0)ert .

To solve Equation (14.8) numerically, we apply Euler’s algorithm to it to get

Ni+1 = Ni + rhNi, (14.9)

where the initial value N1 = 1000.

It is very easy to program Euler’s method. The following script implements
Equation (14.9), taking h = 0.5. It also computes the exact solution for com-
parison.

h = 0.5;
r = 0.8;
a = 0;
b = 10;
m = (b - a) / h;
N = zeros(1, m+1);

310 CHAPTER 14: Introduction to Numerical Methods

Table 14.1 Bacteria growth.

Time
(hours)

Euler Predictor-
Corrector

Exact

0.0 1000 1000 1000

0.5 1400 1480 1492

1.0 1960 2190 2226

1.5 2744 3242 3320

2.0 3842 4798 4953

. . .

5.0 28925 50422 54598

. . .

8.0 217795 529892 601845

. . .

10.0 836683 2542344 2980958

N(1) = 1000;

t = a:h:b;

for i = 1:m

N(i+1) = N(i) + r * h * N(i);

end

Nex = N(1) * exp(r * t);

format bank

disp([t’ N’ Nex’])

plot(t, N), xlabel(’Hours’), ylabel(’Bacteria’)

hold on

plot(t, Nex), hold off

Results are shown in Table 14.1, and also in Fig. 14.5. The Euler solution is
not too good. In fact, the error gets worse at each step, and after 10 hours of
bacteria time it is about 72 per cent. The numerical solution will improve if
we make h smaller, but there will always be some value of t where the error
exceeds some acceptable limit.

In some cases, Euler’s method performs better than it does here, but there are
other numerical methods which always do better than Euler. Two of them are
discussed below. More sophisticated methods may be found in most textbooks
on numerical analysis. However, Euler’s method may always be used as a first
approximation as long as you realize that errors may arise.

14.4 First-order differential equations 311

FIGURE 14.5
Bacteria growth: (a) Euler’s method; (b) the exact solution.

14.4.3 Alternative subscript notation

Equation (14.9) is an example of a finite difference scheme. The conventional
finite difference notation is for the initial value to be represented by N0, i.e.
with subscript i = 0. Ni is then the estimate at the end of step i. If you want the
MATLAB subscripts in the Euler solution to be the same as the finite difference
subscripts, the initial value N0 must be represented by the MATLAB scalar N0,
and you have to compute N(1) separately, before the for loop starts. You also
have to display or plot the initial values separately since they will no longer be
included in the MATLAB vectors t, N and Nex (which now have m instead of
m + 1 elements). Here is a complete script to generate the Euler solution using
finite difference subscripts:

h = 0.5;
r = 0.8;
a = 0;
b = 10;
m = (b - a) / h;
N = zeros(1, m); % one less element now
N0 = 1000;
N(1) = N0 + r*h*N0; % no longer ’self-starting’

for i = 2:m
N(i) = N(i-1) + r * h * N(i-1); %finite difference notation

end

t = a+h:h:b; % exclude initial time = a

312 CHAPTER 14: Introduction to Numerical Methods

Nex = N0 * exp(r * t);
disp([a N0 N0]) % display initial values separately
disp([t’ N’ Nex’])

plot(a, N0) % plot initial values separately
hold on
plot(t, N), xlabel(’Hours’), ylabel(’Bacteria’)
plot(t, Nex), hold off

14.4.4 A predictor-corrector method

One improvement on the numerical solution of the first-order DE

dy/dx = f (x, y), y(0) given,

is as follows. The Euler approximation, which we are going to denote by an
asterisk, is given by

y∗
i+1 = yi + hf (xi, yi) (14.10)

But this formula favors the old value of y in computing f (xi, yi) on the right-
hand side. Surely it would be better to say

y∗
i+1 = yi + h[f (xi+1, y

∗
i+1) + f (xi, yi)]/2, (14.11)

where xi+1 = xi +h, since this also involves the new value y∗
i+1 in computing f

on the right-hand side? The problem of course is that y∗
i+1 is as yet unknown,

so we can’t use it on the right-hand side of Equation (14.11). But we could
use Euler to estimate (predict) y∗

i+1 from Equation (14.10) and then use Equa-
tion (14.11) to correct the prediction by computing a better version of y∗

i+1,
which we will call yi+1. So the full procedure is:

Repeat as many times as required:
Use Euler to predict: y∗

i+1 = yi + hf (xi, yi)

Then correct y∗
i+1 to: yi+1 = yi + h[f (xi+1, y

∗
i+1) + f (xi, yi)]/2.

This is called a predictor-corrector method. The script above can easily be
adapted to this problem. The relevant lines of code are:

for i = 1:m % m steps of length dt
ne(i+1) = ne(i) + r * h * ne(i);
np = nc(i) + r * h * nc(i);
nc(i+1) = nc(i) + r * h * (np + nc(i))/2;
disp([t(i+1) ne(i+1) nc(i+1) nex(i+1)])

end;

14.5 Linear ordinary differential equations (LODEs) 313

ne stands for the ‘straight’ (uncorrected) Euler solution, np is the Euler predictor
(since this is an intermediate result a vector is not needed for np), and nc is the
corrector. The worst error is now only 15 per cent. This is much better than the
uncorrected Euler solution, although there is still room for improvement.

14.5 LINEAR ORDINARY DIFFERENTIAL EQUATIONS
(LODES)

Linear ODEs with constant coefficients may be solved analytically in terms of
matrix exponentials, which are represented in MATLAB by the function expm. For
an example see MATLAB Help: Mathematics: Matrices and Linear Algebra:
Matrix Powers and Exponentials.

14.6 RUNGE-KUTTA METHODS

There are a variety of algorithms, under the general name of Runge-Kutta,
which can be used to integrate systems of ODEs. The formulae involved are
rather complicated; they can be found in most books on numerical analysis.

However, as you may have guessed, MATLAB has plenty of ODE solvers, which
are discussed in MATLAB Help: Mathematics: Differential Equations. Among
them are ode23 (second/third order) and ode45 (fourth/fifth order), which im-
plement Runge-Kutta methods. (The order of a numerical method is the power
of h (i.e., dt) in the leading error term. Since h is generally very small, the
higher the power, the smaller the error). We will demonstrate the use of ode23
and ode45 here, first with a single first-order DE, and then with systems of such
equations.

14.6.1 A single differential equation

Here’s how to use ode23 to solve the bacteria growth problem, Equation (14.8):

dN/dt = rN, N(0) = 1000.

1. Start by writing a function file for the right-hand side of the DE to be
solved. The function must have input variables t and N in this case (i.e.,
independent and dependent variables of the DE), in that order, e.g., create
the function file f.m as follows:

function y = f(t, Nr)
y = 0.8 * Nr;

2. Now enter the following statements in the Command Window:

a = 0;
b = 10;

314 CHAPTER 14: Introduction to Numerical Methods

n0 = 1000;
[t, Nr] = ode23(@f, [a:0.5:b], n0);

3. Note the input arguments of ode23:
@f: a handle for the function f, which contains the right-hand side of the
DE;
[a:0.5:b]: a vector (tspan) specifying the range of integration. If tspan
has two elements ([a b]) the solver returns the solution evaluated at
every integration step (the solver chooses the integration steps and may
vary them). This form would be suitable for plotting. However, if you
want to display the solution at regular time intervals, as we want to here,
use the form of tspan with three elements as above. The solution is then
returned evaluated at each time in tspan. The accuracy of the solution is
not affected by the form of tspan used.
n0: the initial value of the solution N .

4. The output arguments are two vectors: the solutions Nr at times t. For
10 hours ode23 gives a value of 2961338 bacteria. From the exact solution
in Table 14.1 we see that the error here is only 0.7 per cent.

If the solutions you get from ode23 are not accurate enough, you can request
greater accuracy with an additional optional argument. See help.

If you need still more accurate numerical solutions, you can use ode45 instead.
It gives a final value for the bacteria of 2981290—an error of about 0.01%.

14.6.2 Systems of differential equations: Chaos

The reason that weather prediction is so difficult and forecasts are so erratic is
no longer thought to be the complexity of the system but the nature of the DEs
modeling it. These DEs belong to a class referred to as chaotic. Such equations
will produce wildly different results when their initial conditions are changed
infinitesimally. In other words, accurate weather prediction depends crucially
on the accuracy of the measurements of the initial conditions.

Edward Lorenz, a research meteorologist, discovered this phenomenon in
1961. Although his original equations are far too complex to consider here,
the following much simpler system has the same essential chaotic features:

dx/dt = 10(y − x), (14.12)

dy/dt = −xz + 28x − y, (14.13)

dz/dt = xy − 8z/3. (14.14)

This system of DEs may be solved very easily with the MATLAB ODE solvers.
The idea is to solve the DEs with certain initial conditions, plot the solution,
then change the initial conditions very slightly, and superimpose the new so-
lution over the old one to see how much it has changed.

14.6 Runge-Kutta methods 315

We begin by solving the system with the initial conditions x(0) = −2,
y(0) = −3.5 and z(0) = 21.

1. Write a function file lorenz.m to represent the right-hand sides of the
system as follows:

function f = lorenz(t, x)
f = zeros(3,1);
f(1) = 10 * (x(2) - x(1));
f(2) = -x(1) * x(3) + 28 * x(1) - x(2);
f(3) = x(1) * x(2) - 8 * x(3) / 3;

The three elements of the MATLAB vector x, i.e., x(1), x(2) and x(3),
represent the three dependent scalar variables x, y and z respectively. The
elements of the vector f represent the right-hand sides of the three DEs.
When a vector is returned by such a DE function it must be a column
vector, hence the statement

f = zeros(3,1);

2. Now use the following commands to solve the system from t = 0 to
t = 10, say:

x0 = [-2 -3.5 21]; % initial values in a vector
[t, x] = ode45(@lorenz, [0 10], x0);
plot(t,x)

Note that we are use ode45 now, since it is more accurate.
You will see three graphs, for x, y and z (in different colors).

3. It’s easier to see the effect of changing the initial values if there is only
one graph in the figure to start with. It is in fact best to plot the solution
y(t) on its own.
The MATLAB solution x is actually a matrix with three columns (as you
can see from whos). The solution y(t) that we want will be the second
column, so to plot it by itself use the command

plot(t,x(:,2),’g’)

Then keep the graph on the axes with the command hold.

Now we can see the effect of changing the initial values. Let’s just change the
initial value of x(0), from −2 to −2.04—that’s a change of only 2 per cent, and
in only one of the three initial values. The following commands will do this,
solve the DEs, and plot the new graph of y(t) (in a different color):

x0 = [-2.04 -3.5 21];
[t, x] = ode45(@lorenz, [0 10], x0);
plot(t,x(:,2),’r’)

316 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.6
Chaos?

You should see (Fig. 14.6) that the two graphs are practically indistinguish-
able until t is about 1.5. The discrepancy grows quite gradually, until t reaches
about 6, when the solutions suddenly and shockingly flip over in opposite di-
rections. As t increases further, the new solution bears no resemblance to the
old one.

Now solve the system (14.12)–(14.14) with the original initial values using
ode23 this time:

x0 = [-2 -3.5 21];
[t,x] = ode23(@lorenz, [0 10], x0);

Plot the graph of y(t) only—x(:,2)—and then superimpose the ode45 solution
with the same initial values (in a different color).

A strange thing happens—the solutions begin to deviate wildly for t > 1.5!
The initial conditions are the same—the only difference is the order of the
Runge-Kutta method.

Finally solve the system with ode23s and superimpose the solution. (The s
stands for ‘stiff’. For a stiff DE, solutions can change on a time scale that is very
short compared to the interval of integration.) The ode45 and ode23s solutions
only start to diverge at t > 5.

The explanation is that ode23, ode23s and ode45 all have numerical inaccuracies
(if one could compare them with the exact solution—which incidentally can’t
be found). However, the numerical inaccuracies are different in the three cases.
This difference has the same effect as starting the numerical solution with very
slightly different initial values.

How do we ever know when we have the ‘right’ numerical solution? Well, we
don’t—the best we can do is increase the accuracy of the numerical method
until no further wild changes occur over the interval of interest. So in our ex-
ample we can only be pretty sure of the solution for t < 5 (using ode23s or
ode45). If that’s not good enough, you have to find a more accurate DE solver.

So beware: ‘chaotic’ DEs are very tricky to solve!

14.6 Runge-Kutta methods 317

Incidentally, if you want to see the famous ‘butterfly’ picture of chaos, just plot
x against z as time increases (the resulting graph is called a phase plane plot).
The following command will do the trick:

plot(x(:,1), x(:,3))

What you will see is a static 2-D projection of the trajectory, i.e., the solution
developing in time. Demos in the MATLAB Launch Pad include an example
which enables you to see the trajectory evolving dynamically in 3-D (Demos:
Graphics: Lorenz attractor animation).

14.6.3 Passing additional parameters to an ODE solver

In the above examples of the MATLAB ODE solvers the coefficients in the right-
hand sides of the DEs (e.g., the value 28 in Equation (14.13)) have all been
constants. In a real modeling situation, you will most likely want to change
such coefficients frequently. To avoid having to edit the function files each time
you want to change a coefficient, you can pass the coefficients as additional pa-
rameters to the ODE solver, which in turn passes them to the DE function. To
see how this may be done, consider the Lotka-Volterra predator-prey model:

dx/dt = px − qxy (14.15)

dy/dt = rxy − sy, (14.16)

where x(t) and y(t) are the prey and predator population sizes at time t , and
p, q, r and s are biologically determined parameters. For this example, we take
p = 0.4, q = 0.04, r = 0.02, s = 2, x(0) = 105 and y(0) = 8.

First, write a function M-file, volterra.m as follows:

function f = volterra(t, x, p, q, r, s)
f = zeros(2,1);
f(1) = p*x(1) - q*x(1)*x(2);
f(2) = r*x(1)*x(2) - s*x(2);

Then enter the following statements in the Command Window, which generate
the characteristically oscillating graphs in Fig. 14.7:

p = 0.4; q = 0.04; r = 0.02; s = 2;
[t,x] = ode23(@volterra,[0 10],[105; 8],[],p,q,r,s);
plot(t, x)

Note:

■ The additional parameters (p, q, r and s) have to follow the fourth input
argument (options—see help) of the ODE solver. If no options have been
set (as in our case), use [] as a placeholder for the options parameter.

318 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.7
Lotka-Volterra model: (a) predator; (b) prey.

You can now change the coefficients from the Command Window and get a
new solution, without editing the function file.

14.7 A PARTIAL DIFFERENTIAL EQUATION

The numerical solution of partial differential equations (PDEs) is a vast sub-
ject, which is beyond the scope of this book. However, a class of PDEs called
parabolic often lead to solutions in terms of sparse matrices, which were men-
tioned briefly in Chapter 16. One such example is considered in this section.

14.7.1 Heat conduction

The conduction of heat along a thin uniform rod may be modeled by the par-
tial differential equation

∂u

∂t
= ∂2u

∂x2
, (14.17)

where u(x, t) is the temperature distribution a distance x from one end of the
rod at time t , and assuming that no heat is lost from the rod along its length.

Half the battle in solving PDEs is mastering the notation. We set up a rectan-
gular grid, with step-lengths of h and k in the x and t directions respectively.
A general point on the grid has co-ordinates xi = ih, yj = jk. A concise nota-
tion for u(x, t) at xi , yj is then simply ui,j .

Truncated Taylor series may then be used to approximate the PDE by a finite dif-
ference scheme. The left-hand side of Equation (14.17) is usually approximated

14.7 A partial differential equation 319

by a forward difference:

∂u

∂t
= ui,j+1 − ui,j

k

One way of approximating the right-hand side of Equation (14.17) is by the
scheme

∂2u

∂x2
= ui+1,j − 2ui,j + ui−1,j

h2
. (14.18)

This leads to a scheme, which although easy to compute, is only conditionally
stable.

If however we replace the right-hand side of the scheme in Equation (14.18)
by the mean of the finite difference approximation on the j th and (j + 1)th
time rows, we get (after a certain amount of algebra!) the following scheme for
Equation (14.17):

−rui−1,j+1 + (2 + 2r)ui,j+1 − rui+1,j+1 = rui−1,j + (2 − 2r)ui,j + rui+1,j ,

(14.19)

where r = k/h2. This is known as the Crank-Nicolson implicit method, since it
involves the solution of a system of simultaneous equations, as we shall see.

To illustrate the method numerically, let’s suppose that the rod has a length
of 1 unit, and that its ends are in contact with blocks of ice, i.e., the boundary
conditions are

u(0, t) = u(1, t) = 0. (14.20)

Suppose also that the initial temperature (initial condition) is

u(x,0) =
{

2x, 0 ≤ x ≤ 1/2,

2(1 − x), 1/2 ≤ x ≤ 1.
(14.21)

(this situation could come about by heating the center of the rod for a long
time, with the ends kept in contact with the ice, removing the heat source at
time t = 0.) This particular problem has symmetry about the line x = 1/2; we
exploit this now in finding the solution.

If we take h = 0.1 and k = 0.01, we will have r = 1, and Equation (14.19)
becomes

−ui−1,j+1 + 4ui,j+1 − ui+1,j+1 = ui−1,j + ui+1,j . (14.22)

Putting j = 0 in Equation (14.22) generates the following set of equations for
the unknowns ui,1 (i.e., after one time step k) up to the midpoint of the rod,

320 CHAPTER 14: Introduction to Numerical Methods

which is represented by i = 5, i.e., x = ih = 0.5. The subscript j = 1 has been
dropped for clarity:

0 + 4u1 − u2 = 0 + 0.4

−u1 + 4u2 − u3 = 0.2 + 0.6

−u2 + 4u3 − u4 = 0.4 + 0.8

−u3 + 4u4 − u5 = 0.6 + 1.0

−u4 + 4u5 − u6 = 0.8 + 0.8.

Symmetry then allows us to replace u6 in the last equation by u4. These equa-
tions can be written in matrix form as

⎡
⎢⎢⎢⎢⎣

4 −1 0 0 0
−1 4 −1 0 0

0 −1 4 −1 0
0 0 −1 4 −1
0 0 0 −2 4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0.4
0.8
1.2
1.6
1.6

⎤
⎥⎥⎥⎥⎦ . (14.23)

The matrix (A) on the left of Equations (14.23) is known as a tridiagonal matrix.
Having solved for the ui,1 we can then put j = 1 in Equation (14.22) and
proceed to solve for the ui,2, and so on. The system (14.23) can of course be
solved directly in MATLAB with the left division operator. In the script below,
the general form of Equations (14.23) is taken as

Av = g. (14.24)

Care needs to be taken when constructing the matrix A. The following notation
is often used:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

b1 c1

a2 b2 c2

a3 b3 c3
. . .

an−1 bn−1 cn−1

an bn

⎤
⎥⎥⎥⎥⎥⎥⎦

.

A is an example of a sparse matrix (see Chapter 16).

The script below implements the general Crank-Nicolson scheme of Equa-
tion (14.19) to solve this particular problem over 10 time steps of k = 0.01.
The step-length is specified by h = 1/(2n) because of symmetry. r is therefore
not restricted to the value 1, although it takes this value here. The script exploits
the sparsity of A by using the sparse function.

14.7 A partial differential equation 321

format compact

n = 5;

k = 0.01;

h = 1 / (2 * n); % symmetry assumed

r = k / h ^ 2;

% set up the (sparse) matrix A

b = sparse(1:n, 1:n, 2+2*r, n, n); % b(1) .. b(n)

c = sparse(1:n-1, 2:n, -r, n, n); % c(1) .. c(n-1)

a = sparse(2:n, 1:n-1, -r, n, n); % a(2) ..

A = a + b + c;

A(n, n-1) = -2 * r; % symmetry: a(n)

full(A) %

disp(’ ’)

u0 = 0; % boundary condition (Eq 19.20)

u = 2*h*[1:n] % initial conditions (Eq 19.21)

u(n+1) = u(n-1); % symmetry

disp([0 u(1:n)])

for t = k*[1:10]

g = r * ([u0 u(1:n-1)] + u(2:n+1)) ...

+ (2 - 2 * r) * u(1:n); % Eq 19.19

v = A\g’; % Eq 19.24

disp([t v’])

u(1:n) = v;

u(n+1) = u(n-1); % symmetry

end

Note:

■ to preserve consistency between the formal subscripts of Equation (14.19)
etc. and MATLAB subscripts, u0 (the boundary value) is represented by
the scalar u0.

In the following output the first column is time, and subsequent columns are
the solutions at intervals of h along the rod:

0 0.2000 0.4000 0.6000 0.8000 1.0000

0.0100 0.1989 0.3956 0.5834 0.7381 0.7691

0.0200 0.1936 0.3789 0.5397 0.6461 0.6921

...

0.1000 0.0948 0.1803 0.2482 0.2918 0.3069

322 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.8
Map of circle to an airfoil: illustration of the application of the Joukowski transformation in the complex
plane.

MATLAB has some built-in PDE solvers. See MATLAB Help: Mathematics: Dif-
ferential Equations: Partial Differential Equations.

14.8 COMPLEX VARIABLES AND CONFORMAL MAPPING

In this section one application of the complex-variable capabilities in MATLAB
is demonstrated. It is the transformation of a circle to a Joukowski airfoil.

Joukowski airfoil

The solution of the flow around a circular cylinder with circulation in a cross
flow can be used to predict the flow around thin airfoils. We can transform the
local geometry of the cylinder into an ellipse, an airfoil or a flat plate without
influencing the geometry if the far field. This procedure is known as conformal
mapping. If we interpret the Cartesian coordinates as the coordinates the plane
of complex numbers z = x + iy, where x and y are real numbers, i = √−1, x is
the real part of z and y is the imaginary part of z, then doing this allows us
to use complex variable theory to solve two-dimensional potential flow prob-
lems. We are not going to examine complex variable theory here. Instead, we
will give an example of the application of one of the ideas to illustrate that
the circle can be transformed into an airfoil. Table 14.2 is a MATLAB script
that does this. MATLAB is very useful for this problem because it does com-
plex arithmetic. The steps are outlined in the table. The result of executing this
code is illustrated in Fig. 14.8. The figure shows the circle and the airfoil that
is mapped from it. Each point on the circle corresponds to a unique point on
the airfoil. The potential at each point on the cylinder is the same as the cor-
responding point on the airfoil. This is how the solution of the circle problem
is mapped to solve the flow around the airfoil. What is different is the distance
between points and, hence, the velocity and pressure distributions on the air-
foil must be determined from the mapped distribution of the potential. The
far field is not affected by the transformation.

14.9 Other numerical methods 323

Table 14.2 MATLAB file used to produce Fig. 14.8.

% Joukowski transformation MATLAB code

%

% Example of conformal mapping of a circle to an airfoil:

% A problem in the field of aerodynamics

% Daniel T. Valentine 2009/2018.

% Circle in (xp,yp) plane: R = sqrt(xpˆ2 + ypˆ2), R > 1

% Complex variables of three complex planes of interest:

% zp = xp + i*yp ==> Circle plane

% z = x + i*y ==> Intermediate plane

% w = u + i*v ==> Airfoil (or physical) plane

clear;clc

% Step 1: Select the parameters that define the airfoil of interest.

% (1) Select the a == angle of attack alpha

a = 2; % in degrees

a = a*pi/180; % Conversion to radians

% (2) Select the parameter related to thichkness of the airfoil:

e = .1;

% (3) Select the shift of y-axis related to camber of the airfoil:

f = .1;

% (4) Select the trailing edge angle parameter:

te = .05; % 0 < te < 1 (0 ==> cusped trailing edge)

n = 2 - te; % Number related to trailing edge angle.

tea = (nˆ2-1)/3; % This is a Karman-Trefftz extension.

% Step 2: Compute the coordinates of points on circle in zp-plane:

R = 1 + e;

theta = 0:pi/200:2*pi;

yp = R * sin(theta);

xp = R * cos(theta);

% Step 3: Transform coordinates of circle from zp-plane to z-plane:

z = (xp - e) + i.*(yp + f);

% Step 4: Transform circle from z-plane to airfoil in w-plane

% (the w-plane is the "physical" plane of the airfoil):

rot = exp(-i*a); % Application of angle of attack.

w = rot .* (z + tea*1./z); % Joukowski transformation.

% Step 5: Plot of circle in z-plane on top of airfoil in w-plane

plot(xp,yp), hold on

plot(real(w),imag(w),’r’),axis image, hold off

14.9 OTHER NUMERICAL METHODS

The ODEs considered earlier in this chapter are all initial value problems. For
boundary value problem solvers, see MATLAB Help: Mathematics: Differential
Equations: Boundary Value Problems for ODEs.

MATLAB has a large number of functions for handling other numerical proce-
dures, such as curve fitting, correlation, interpolation, minimization, filtering
and convolution, and (fast) Fourier transforms. Consult MATLAB Help: Math-
ematics: Polynomials and Interpolation and Data Analysis and Statistics.

324 CHAPTER 14: Introduction to Numerical Methods

FIGURE 14.9
A cubic polynomial fit.

Here’s an example of curve fitting. The following script enables you to plot
data points interactively. When you have finished plotting points (signified
when the x coordinates of your last two points differ by less than 2 in absolute
value) a cubic polynomial is fitted and drawn (see Fig. 14.9).

% Interactive script to fit a cubic to data points

clf
hold on
axis([0 100 0 100]);

diff = 10;
xold = 68;
i = 0;
xp = zeros(1); % data points
yp = zeros(1);

while diff > 2
[a b] = ginput(1);
diff = abs(a - xold);
if diff > 2
i = i + 1;
xp(i) = a;
yp(i) = b;
xold = a;
plot(a, b, ’ok’)

end
end

Summary 325

p = polyfit(xp, yp, 3);
x = 0:0.1:xp(length(xp));
y= p(1)*x.^3 + p(2)*x.^2 + p(3)*x + p(4);
plot(x,y), title(’cubic polynomial fit’), ...

ylabel(’y(x)’), xlabel(’x’)
hold off

Polynomial fitting may also be done interactively in a figure window, with
Tools -> Basic Fitting.

SUMMARY

■ A numerical method is an approximate computer method for solving a
mathematical problem which often has no analytical solution.

■ A numerical method is subject to two distinct types of error: rounding
error in the computer solution, and truncation error, where an infinite
mathematical process, like taking a limit, is approximated by a finite pro-
cess.

■ MATLAB has a large number of useful functions for handling numerical
methods.

EXERCISES

14.1 Use Newton’s method in a script to solve the following (you may have
to experiment a bit with the starting values). Check all your answers
with fzero. Check the answers involving polynomial equations with
roots.
Hint: use fplot to get an idea of where the roots are, e.g.,

fplot(’x^3-8*x^2+17*x-10’, [0 3])

The Zoom feature also helps. In the figure window select the Zoom In
button (magnifying glass) and click on the part of the graph you want
to magnify.
(a) x4 − x = 10 (two real roots and two complex roots)
(b) e−x = sinx (infinitely many roots)
(c) x3 − 8x2 + 17x − 10 = 0 (three real roots)
(d) logx = cosx

(e) x4 − 5x3 − 12x2 + 76x − 79 = 0 (four real roots)
14.2 Use the Bisection method to find the square root of 2, taking 1 and 2 as

initial values of xL and xR . Continue bisecting until the maximum error
is less than 0.05 (use Inequality (14.2) of Section 14.1 to determine
how many bisections are needed).

326 CHAPTER 14: Introduction to Numerical Methods

14.3 Use the Trapezoidal rule to evaluate
∫ 4

0 x2dx, using a step-length of
h = 1.

14.4 A human population of 1000 at time t = 0 grows at a rate given by

dN/dt = aN,

where a = 0.025 per person per year. Use Euler’s method to project the
population over the next 30 years, working in steps of (a) h = 2 years,
(b) h = 1 year and (c) h = 0.5 years. Compare your answers with the
exact mathematical solution.

14.5 Write a function file euler.m which starts with the line

function [t, n] = euler(a, b, dt)

and which uses Euler’s method to solve the bacteria growth DE (14.8).
Use it in a script to compare the Euler solutions for dt = 0.5 and 0.05
with the exact solution. Try to get your output looking like this:

time dt = 0.5 dt = 0.05 exact

0 1000.00 1000.00 1000.00
0.50 1400.00 1480.24 1491.82
1.00 1960.00 2191.12 2225.54
...
5.00 28925.47 50504.95 54598.15

14.6 The basic equation for modeling radio-active decay is

dx/dt = −rx,

where x is the amount of the radio-active substance at time t , and r is
the decay rate.
Some radio-active substances decay into other radio-active substances,
which in turn also decay. For example, Strontium 92 (r1 = 0.256 per hr)
decays into Yttrium 92 (r2 = 0.127 per hr), which in turn decays into
Zirconium. Write down a pair of differential equations for Strontium
and Yttrium to describe what is happening.
Starting at t = 0 with 5 × 1026 atoms of Strontium 92 and none of Yt-
trium, use the Runge-Kutta method (ode23) to solve the equations up
to t = 8 hours in steps of 1/3 hr. Also use Euler’s method for the same
problem, and compare your results.

14.7 The springbok (a species of small buck, not rugby players!) population
x(t) in the Kruger National Park in South Africa may be modeled by the
equation

dx/dt = (r − bx sinat)x,

Exercises 327

FIGURE 14.10
A trajectory of Van der Pol’s equation.

where r , b, and a are constants. Write a program which reads values for
r , b, and a, and initial values for x and t , and which uses Euler’s method
to compute the impala population at monthly intervals over a period
of two years.

14.8 The luminous efficiency (ratio of the energy in the visible spectrum to
the total energy) of a black body radiator may be expressed as a per-
centage by the formula

E = 64.77T −4
∫ 7×10−5

4×10−5
x−5(e1.432/T x − 1)−1dx,

where T is the absolute temperature in degrees Kelvin, x is the wave-
length in cm, and the range of integration is over the visible spectrum.
Write a general function simp(fn, a, b, h) to implement Simpson’s
rule as given in Equation (14.4).
Taking T = 3500 K, use simp to compute E, firstly with 10 intervals
(n = 5), and then with 20 intervals (n = 10), and compare your results.
(Answers: 14.512725% for n = 5; 14.512667% for n = 10)

14.9 Van der Pol’s equation is a second-order non-linear differential equa-
tion which may be expressed as two first-order equations as follows:

dx1/dt = x2

dx2/dt = ε(1 − x2
1)x2 − b2x1.

The solution of this system has a stable limit cycle, which means that if
you plot the phase trajectory of the solution (the plot of x1 against x2)
starting at any point in the positive x1-x2 plane, it always moves con-
tinuously into the same closed loop. Use ode23 to solve this system

328 CHAPTER 14: Introduction to Numerical Methods

numerically, for x1(0) = 0, and x2(0) = 1. Draw some phase trajectories
for b = 1 and ε ranging between 0.01 and 1.0. Fig. 14.10 shows you
what to expect.

CHAPTER 15

Signal Processing

CONTENTS

Harmonic
analysis........... 330
Fast Fourier
Transform (FFT) 335

THE OBJECTIVE OF THIS CHAPTER IS TO INTRODUCE SIG-
NAL PROCESSING. YOUWILL LEARNABOUT TWOMETHODS,
OF MANY, TO EXAMINE LARGE DATA SETS. THEY ARE:

■ Harmonic analysis.
■ Fast Fourier Transform analysis.

In this chapter we apply MATLAB to examine periodic data sets. Harmonic
analysis is introduced in the next section to examine periodic data sets. In the
subsequent section the fast Fourier transform (FFT) method is applied to exam-
ine the temporal-evolution of measured or computed data. These procedures
are important methods in the field of signal processing.

A signal is a sequence of data that is measured by experimental methods or
computed by computational methods. For example, the data f (x) is measured
at relatively small intervals of a particular variable x, e.g., x could be time or
a space dimension. If the signal is periodic in a range of x, e.g., −π to π ,
harmonic analysis is a useful and quite practical technique. The FFT method is
a related method. Both methods are associated with the fitting of data with a
Fourier series. In addition, both methods are widely used in engineering, e.g.,
in naval architecture, acoustics (or noise) and vibration engineering, electrical
engineering, ocean engineering, etc.

The theory of Fourier series is an important topic in mathematics for physicists
and engineers. A reasonably thorough discussion of this topic can be found in
Mathematics of Physics and Modern Engineering, Second Edition, by I.S. Sokol-
nikoff and R.M. Redheffer, a book published by McGraw-Hill (1966). Because
of the importance of this topic, it should not be surprising that there are many
other books that describe the theory behind the method and the practical
applications of the method. In this introductory section we give the results
associated with applying the Fourier series method that are needed to examine
signals.

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00022-1
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

329

https://doi.org/10.1016/B978-0-08-102997-8.00022-1

330 CHAPTER 15: Signal Processing

Let us suppose f (x) is given by the trigonometric series

f (x) = 1

2
ao +

∞∑
n=1

(an cosnx + bn sinnx) (15.1)

where −π ≤ x ≤ π and, hence,

an = 1

π

∫ π

−π

f (x) cosnx dx (15.2)

for n = 0,1,2, . . . , and

bn = 1

π

∫ π

−π

f (x) sinnx dx (15.3)

for n = 1,2,3, This assumes that the function f (x) is periodic, i.e., f (x) =
f (x + 2π).

If we are given a data set f (x) and it is assumed to be periodic in the interval
−π ≤ x ≤ π , we can compute the coefficients an and bn by applying the above
formulas. With this approach we say that we expanded f (x) in or say that f (x)

has the Fourier series

f (x) ∼ 1

2
Ao +

N∑
n=1

(An cosnx + Bn sinnx) (15.4)

where N is a positive integer greater than or equal to 1. It is the number of
terms to be evaluated to construct a Fourier series (or Fourier expansion) of
f (x). If N → ∞ and f (x) is continuous and periodic, the last equation is
essentially the trigonometric expansion of f (x) and the result is exact. An im-
portant advantage of this series is that it can represent discontinuous functions
as well. Of course, in this case or in cases where the trigonometric representa-
tion is not exact, it is a best fit representation of f (x) in terms of the assumed
periodic function, Eq. (15.4).

15.1 HARMONIC ANALYSIS

Let us examine the data illustrated in Fig. 15.1 by fitting a trigonometric series
through the data. This sample set of “observed” data was generated by using
the following formula:

f = .6 − cosx − .5 cos 2x + .4 cos 3x + sinx + error, (15.5)

where the error was generated by the random number generator randn, a built-
in function in MATLAB. Eq. (15.5) was selected for this example because it is

15.1 Harmonic analysis 331

FIGURE 15.1
Sample of ten repeated periodic data sets with error.

a five-term trigonometric serious plus an error term. It was selected so that we
can examine how well harmonic analysis plucks out the harmonics (i.e., the
first five terms) from a signal that contains error (the error in some applica-
tions of signal processing is also called “noise”).

We want to fit a finite trigonometric sum to a set of observed data. In this
case the discrete set of observed data contains the values of f (x) at x = −π ,
−π + π/N , −π + 2π/N , . . . , π − π/N . It is assumed that f (−π) = f (π). Note
that −π ≤ x < π is the domain of x that the data are observed. The values of
f (x) are evaluated (or observed) at equally spaced intervals of dx = π/N . The
example numerical analysis is for N = 200 where Np = 2N + 1 is the number
of equally spaced values of f from 0 to π where the data are measured. The
data obtained at these points were computed by applying Eq. (15.5). Since f is
prescribed on the interval −π ≤ x ≤ π and it is assumed that f (−π) = f (π),
harmonic analysis is a good way to examine the data to determine its harmonic
content, i.e., to determine the coefficients of the Fourier series that we are ap-
plying to expand the data. Note that the noise in the data introduced by the
random number generator introduces an error in the periodicity assumption.
Hence, in the example below ten sets of the observed data are examined by re-
peating the computational experiment ten times. The results illustrate that the
error (or noise), in this case, is random and can be averaged away if a sufficient
number of the same experiment is performed.

It turns out that if you have Np equally spaced data points we can fit the data
with Np − 1 terms of a Fourier series. The results are exact in the sense that we
have a system of linear Np − 1 equations in Np − 1 unknowns. It is reasonably

332 CHAPTER 15: Signal Processing

well known (see, e.g., the book by Sokolnikoff and Redheffer cited above) that
the solution to this problem is

f = Ao +
N∑

n=1

An cosnx +
N−1∑
n=1

Bn sinnx (15.6)

(Note that Ao is twice the value of ao in the Fourier series given in the intro-
duction to this chapter.) In this case, it can be shown that

Ao = 1

2N

2N∑
m=1

f

(
−π + (m − 1)π

N

)
(15.7)

AN = 1

2N

2N∑
m=1

f

(
−π + (m − 1)π

N

)
cos ((m − 1)π) (15.8)

An = 1

N

2N∑
m=1

f

(
−π + (m − 1)π

N

)
cos

(m − 1) nπ

N
, n = 1,2,3, . . . ,N − 1

(15.9)

Bn = 1

N

2N∑
m=1

f

(
−π + (m − 1)π

N

)
sin

(m − 1) nπ

N
, n = 1,2,3, . . . ,N − 1

(15.10)

This system of equations was applied to examine the data generated by
Eq. (15.5). The MATLAB script developed and applied is as follows:

% Harmonic analysis
clear;clc
for ir = 1:10
N = 200; % Nc = N+1 implies x = 0 (center of domain).

% Np = 2N+1 are the number of points on the
% closed interval x = [-pi, pi].

dx = pi/N; % Spacing between the points on x.
x = -pi:dx:pi;
f = [.6 - cos(x) - .5*cos(2*x) + .4*cos(3*x) ...

+ sin(x) + 0.1*randn(1,length(x))];
A0 = (1/2/N) * sum(f(1:end-1));
A(N) = (1/2/N) * sum(f(1:end-1).*cos(N*x(1:end-1)));
for jn = 1:N-1

A(jn) = (1/N)*sum(f(1:end-1).*cos(jn*x(1:end-1)));
B(jn) = (1/N)*sum(f(1:end-1).*sin(jn*x(1:end-1)));

end

15.1 Harmonic analysis 333

FIGURE 15.2
Harmonic analysis of the ten periodic data sets, f , compared.

AA = [A0 A];
figure(1)
hold on
stem([0:length(AA(1:11))-1],AA(1:11),’ko’,’LineWidth’,2)
stem(B(1:9),’-.kd’,’LineWidth’,2)
legend(’A_n’’s’, ’B_n’’s’)
xlabel(’Mode number n’)
ylabel(’A_n’’s or B_n’’s’)
title(’Harmonic analysis example’)
hold off
figure(2)
hold on
plot(x,f,’k’)
title(’Ten sets of data with error compared’)
xlabel(’x’),ylabel(’f’)
hold off
end

Note that the algorithm was executed ten times to examine the influence of
the random error on a converged solution. The random error is plus-or-minus
10% of unity. The ten samples of the periodic data examined in the script is
illustrated in Fig. 15.1. The ten associated harmonic-analysis results are given
in Fig. 15.2. As we might have expected, the results, on average, are pretty close
to the exact results described next.

Since the function f (x) without error is

f = .6 − cosx − .5 cos 2x + .4 cos 3x + sinx

334 CHAPTER 15: Signal Processing

FIGURE 15.3
Sample of the periodic data set, f (x), without error.

FIGURE 15.4
Harmonic analysis of the periodic data, f (x), without error.

it is a five term trigonometric series. The harmonic analysis of this function
is exact. This function and the exact results of the harmonic analysis of it
are illustrated in Fig. 15.3 and Fig. 15.4, respectively. The figures were gener-
ated with the same MATLAB script given above with the following changes.
The coefficient of the error term was set to zero as follows: We changed
0.1*randn(1,length(x))]; to 0*randn(1,length(x))];. Since the ten repeated
trials are identical, if you change the repeated-trials for loop, for ir = 1:10,
to for ir = 1:1, the results you obtain will be identical to the results in the
figures for the zero error case.

15.2 Fast Fourier Transform (FFT) 335

Comparing the error-less data with the noisy data generated by adding a ran-
dom error, illustrates the need for making repeated measurements in the labo-
ratory to get a sensible result for the amplitudes of the harmonics that represent
the shape of the phenomenon sought, viz., f (x) in the interval −π ≤ x ≤ π .
Note that if a trigonometric series is used to define the input data set, the
output of harmonic analysis yields an exact reproduction of the input se-
ries.

15.2 FAST FOURIER TRANSFORM (FFT)

James W. Cooley and John W. Tukey published An Algorithm for the Machine
Calculation of Complex Fourier Series in 1965; it appeared in Mathematics of
Computations 19, 297–301. This paper was cited in the book edited by Leo L. Be-
ranek and István L. Vér titled Noise and Vibration Control Engineering published
by John Wiley & Sons (1992). This book provides a good review of signal pro-
cessing as well as its practical applications in noise and vibration engineering.
The discussion to follow follows closely the discussion in this book.

The Fourier transform of a time history signal, y(t), that is measured over the
time interval 0 ≤ t ≤ T is defined for all frequencies, both positive and negative,
by

Y(ω,T) =
∫ T

0
y(t)e−i2πωt dt (15.11)

where Y is a function of frequency, ω. In terms of a digital time series of N data
values where y(t) = y(n�t), n = 0,1,2, . . . ,N − 1. The Fourier transform may
be written as a complex Fourier series

Y(ω,T) = Y(k�ω,N) = �t

N−1∑
n=0

y(n�t) exp(−i2πωn�t) (15.12)

where the spectral components, i.e., the Y(k�ω,N)’s, are generally complex
valued and are defined only at N discrete frequencies

ωk = k�ω = k

N �t
, k = 0,1,2, . . . ,N − 1

Hence, this is essentially the complex version of the Fourier series expansion
introduced in the introduction of this chapter. To clarify this point further, let

336 CHAPTER 15: Signal Processing

us divide Eq. (15.12) by T = N�t . This yields the following result:

Ck = Y(k�ω,N)

N�t
= 1

N

N−1∑
n=0

x(n�t) exp(−i2πωn�t)

= 1

N

N−1∑
n=0

x(n�t) exp(−i2πk n/N) (15.13)

Note the analogy between this formula and the formulas for the Fourier coeffi-
cients given in the previous section on harmonic analysis. In this case, however,
the coefficients are complex numbers. Since MATLAB deals with complex num-
bers and does complex arithmetic, applying the FFT methodology to examine
signals is reasonably straightforward. This will be illustrated below by an ex-
ample.

The complex Fourier coefficients defined by Eq. (15.13) are for an assumed
periodic function and, hence, the time history y(t) is assumed to repeat over
periods equal to the sampling period, T . The Fourier components are unique
only out to k = N/2, i.e., out to the frequency ωk = 1/(2�t), commonly known
as the Nyquist frequency, ωN , of the digital signal. At this frequency there are
only two sample values per cycle and, hence, the error known as aliasing is initi-
ated; for details see, e.g., Beranek and Vér (1992) cited above. The first N/2 + 1
Fourier coefficients, from k = 0 to k = N/2, define the spectral components
(i.e., magnitudes of the Fourier coefficients of significant magnitude) at posi-
tive frequencies, while the last N/2 − 1 Fourier coefficients, from k = N/2 + 1
to k = N − 1, define the spectral components at negative frequencies.

The various FFT algorithms developed since the publication of Cooley-Tukey
algorithm are well documented in the technical literature. The details of de-
veloping and FFT algorithm is also beyond the scope of this presentation.
However, since the procedure applied in the example examined in this section
can be applied to other problems that may be of interest to the reader, a few of
the hints that need to be considered in applying the Cooley-Tukey algorithm
pointed out by Beranek and Vér are worth noting since this algorithm is the
basis for the FFT algorithm applied in the example discussed in this section.
They are:

■ It is useful to restrict the number of equally spaced data points for each
FFT to a power of 2, i.e., N = 2p, where p = 8 to 12 are commonly used.

■ The frequency resolution of the Fourier components will be 1/(N �t).
■ The Nyquist frequency where aliasing is initiated occurs at k = N/2 and

it is ωN = 1/(2�t). The sampling frequency should be at least twice the
highest frequency expected to be found in the signal.

15.2 Fast Fourier Transform (FFT) 337

■ The first N/2 + 1 Fourier components up to the Nyquist frequency are
related to the last N/2 − 1 components above the Nyquist frequency by
Y(k) = Y ∗(N − k), k = 0,1,2, . . . ,N − 1, where the asterisk denotes com-
plex conjugate.

■ The Fourier components that define only the positive frequencies is called
a one-sided spectrum. This spectrum is given by Y(0), Y(N/2), and 2Y(k),
k = 1,2, . . . ,N/2 − 1.

The one-sided spectral components for a periodic signal with zero mean are
given by

P(ω) = 2Y (ω,T)

T
, ω > 0, or k = 1,2, . . . ,

N

2
− 1 (15.14)

where Y(ω,T) is defined in Eq. (15.12). The magnitudes of the Fourier com-
ponents, |P(ω)|, are usually plotted as a stem plot (see example below) and,
hence, it is often called a line spectrum. Because each of the Fourier compo-
nents are complex, they define both a phase and an amplitude for each of the
components. However, the phase information is generally utilized only in ap-
plications where there may be a need to reconstruct the time history of the
signal or to determine the peak values of the signal.

Let us consider the following example to illustrate how MATLAB can be used
to apply an FFT to a signal. Consider the following signal:

y(t) = 0.7 sin(2π50t) + sin(2π120t) + noise (15.15)

where the sample is taken over the interval of time 0 ≤ t ≤ T . The sam-
pling frequency is Fs = 3000. Thus T = 1/Fs. The power spectrum is also
usually plotted to isolate the dominant frequencies in a signal. It is Pyy =
(Y (ω,T)Y ∗(ω,T))/L, where L = 2p and p = 11 was selected in this exam-
ple. With this brief description of a signal processing problem, the following
script was applied that implements the FFT methodology to examine this sig-
nal (it is based on an example in the help documentation available within
MATLAB).

% ---------Example of the application of FFT------------
% Example of the application of FFT
Fs = 3000; % Sampling frequency
T = 1/Fs; % Sample time
pwr2 = 11;
L = power(2,pwr2); % Length of signal
t = (0:L-1)*T; % Time vector for FFT
% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid
x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
y = x + 2*randn(size(t)); % Sinusoids plus noise at t

338 CHAPTER 15: Signal Processing

FIGURE 15.5
Example of signal to be analyzed by spectral analysis.

plot(Fs*t/1000,y,’k’),axis([0 2 -10 8])
title(’Signal Corrupted with Zero-Mean Random Noise’)
xlabel(’time (seconds)’),ylabel(’signal y(t)’)
figure(2)
NFFT = 2^nextpow2(L); % Next power of 2 from length of y
Y = fft(y,NFFT)/L;
Pyy = Y.*conj(Y)/L;
f = Fs/2*linspace(0,1,NFFT/2+1);
%
% ---------Plot single-sided amplitude spectrum.--------
FF = 2*abs(Y(1:NFFT/2+1));
stem(f(1,1:110),FF(1,1:110),’k’,’Linewidth’,2)
title(’Single-Sided Amplitude Spectrum of y(t)’)
xlabel(’Frequency (Hz)’)
ylabel(’|Y(\omega)|’)
figure(3)
stem(f(1:110),Pyy(1:110),’k’,’Linewidth’,2)
title(’Power spectral density’)
xlabel(’Frequency (Hz)’)
ylabel(’Pyy’)

The signal to be analyzed by spectral analysis (as it is called) is illustrated in
Fig. 15.5. The line spectrum and the power spectrum predicted for this signal
are given in Fig. 15.6 and Fig. 15.7, respectively. There are two things to note.
One is that the dominant frequencies in the signal are identified clearly in the
spectra. The second is that the power spectrum isolates the dominant modes
in the signal more clearly.

15.2 Fast Fourier Transform (FFT) 339

FIGURE 15.6
Line spectrum of the signal in Fig. 15.5.

FIGURE 15.7
Power spectrum of the signal in Fig. 15.5.

CHAPTER 16

SIMULINK® Toolbox

CONTENTS

Mass-spring-
damper dynamic
system............ 347
Bouncing ball
dynamic system 349

The van der Pol
oscillator......... 352
The Duffing
oscillator......... 353
Exercises 355

THE OBJECTIVE OF THIS CHAPTER IS TO INTRODUCE SIMU-
LINK BY APPLYING IT TO SOLVE DYNAMIC SYSTEMS INVES-
TIGATED BY SCIENCE, TECHNOLOGY, ENGINEERING AND
MATHEMATICS STUDENTS.

The first topic covered in this chapter is the process of opening Simulink and initi-
ating the construction of a signal processing model. Subsequently, we examine two
examples of dynamic systems typically investigated by students in their first-year
courses in physics. The next two dynamic systems examined are classic nonlinear
equations typically investigated in courses on nonlinear dynamical systems. The
examples examined in this chapter are as follows:

■ An example of signal processing illustrating the initiation of the con-
struction of a Simulink model.

■ A spring, mass damper model of a mechanical system.
■ A bouncing ball model.
■ The van der Pol oscillator.
■ The Duffing oscillator.

In this chapter an introduction to applying Simulink software via relatively
simple yet interesting examples from classical mechanics is presented. In a typ-
ical science, technology, engineering and mathematics program at universities
in the US the students are introduced to dynamical systems modeling in their
first-year course on physics. In the first course they learn about systems that
can be modeled by springs, masses and damping devices. In the second course
the analogous electrical system that can be modeled by resistors, inductors and
capacitors is investigated. How to simulate the dynamics of these systems with
Simulink is examined in this chapter.

What is Simulink? As described in the help available with this toolbox: It is
used to model, simulate and analyze dynamic systems. It enables you to pose
questions about a system, model the system and observe what happens. “With
Simulink, you can easily build models from scratch, or modify existing models
to meet your needs. Simulink supports linear and nonlinear systems, modeled
in continuous time, sampled time, or a hybrid of the two. Systems can also

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00023-3
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

341

https://doi.org/10.1016/B978-0-08-102997-8.00023-3

342 CHAPTER 16: SIMULINK® Toolbox

FIGURE 16.1
Simulink window start page.

be multirate—having different parts that are sampled or updated at different
rates.” It is a graphical programming environment.

To conclude this introduction we will examine a simple example of a signal
processing model. Recall that the help files available can be opened by clicking
the question mark, ‘?’, just below the word “Help” in the toolbars at the top of
the MATLAB desktop. Click on Simulink to open the e-manual on this toolbox.
The guidelines provided in the help for the development of more sophisticated
dynamic system models provides one of the key suggestions for learning to use
Simulink. It is to develop a new model by starting, if possible, with an existing
model, modifying it to develop a new model to solve a new problem.

To start the exercises we need to open Simulink. This can be done by executing
the following command in the command window.

>> simulink

This command opens the Simulink Start Window illustrated in Fig. 16.1. Click
on the Blank Model pain near the middle of the start window. A model build-
ing window illustrated in Fig. 16.2 opens. Click the icon in the toolbar to open
the library browser. This browser is illustrated in Fig. 16.3. In the left panel
of the browser an index of the Libraries is provided. Pointing and clicking on
any of the items opens up the various utilities available to design (or develop)
a model within Simulink to simulate a dynamic system. By single-clicking on
the “white-page” icon below the word “File” just below the title of the browser
window opens a new model; this is illustrated in Fig. 16.3. Pull down the File
menu in the untitled model window, point and click “save” and name the

SIMULINK® Toolbox 343

FIGURE 16.2
The Simulink untitled coding window.

FIGURE 16.3
The Simulink library browser with the Simulink untitled coding window.

model that you plan to build, e.g., name it Example1. This operation creates a
file named Example1.mdl. Note the file extension .mdl. This is the file extension
that identifies the file as a Simulink model. The new model window with this

344 CHAPTER 16: SIMULINK® Toolbox

FIGURE 16.4
The untitled working window renamed “Example1”.

name is illustrated in Fig. 16.4. This will help save your work as you build and
debug the model to solve a particular dynamic system problem.

While in the model window hold “Ctrl” and “e” simultaneously to open the
solver configuration window illustrated in Fig. 16.5. Note that the default “Rel-
ative tolerance” is 1e-3, the “Solver” is ode45 among other parameters. Except
for the first example below the “Relative tolerance” was changed to 1e-6. In
addition, in some cases the solver applied was changed. The solver applied is
also noted at the bottom right of the model window.

Close the model by clicking the X in the upper right-hand corner of the model
window. To open this file again double-click on it in the Current Folder win-
dow on the MATLAB desktop. We will build a simple model in this file window
in the beginning of the next section of this chapter.

It is expected, of course, that the reader reproduce the next example on data
analysis and subsequent examples on dynamic-system modeling to study the
application of Simulink to solve technical computing problems. The examples
are relatively simple; they are similar to the dynamic system problems exam-
ined in Chapters 14 and 17 with Matlab codes.

To illustrate the mechanics of constructing a model let us consider a signal-
processing example. In this example we are going to examine the output from
a sine-wave generator. We will integrate the area under the sine wave and com-
pare this with the original signal on a scope, a device that plots the sine wave

SIMULINK® Toolbox 345

FIGURE 16.5
Simulink window illustrating the solver configuration; this is opened by clicking the icon to the right of the
Library Browser icon.

and the integral of the sine wave with respect to time from time equal to zero,
i.e., the time the simulation is started, to the specified time (in this case the
default is 10). This model was built by applying the following steps.

1. Point-and-click on the “Sources” icon in the Simulink Library Browser.
This opens a palette from which we want to drag the “Sine Wave” and
drop it onto the Example1 window illustrated in Fig. 16.4 (we are trying
to construct the model illustrated in Fig. 16.6). This sine wave generator
is what we need to provide the input to the model we are building in this
section.

2. Next, open up the “Commonly Used Blocks” by scrolling up the contents
and pointing-and-clicking on this topic to open up another palette. Find
on this palette a “Scope”, an “Integrator”, and a “Mux”. Next, drag and
drop each of these devices onto the Example1 window.

3. In the Example1 window drag the cursor to the right-side output port of
the “Sine Wave” generator. When you see the cross, hold the left-mouse
button down and drag the cross to the top-left input port of the “Mux”.
This is one way to connect a “wire” from one device to the next.

4. Following the same procedure connect the right-side port of the “Mux”
to the left-side input port of the “Scope”.

5. Starting at the left-side input port of the “Integrator” hold the left-mouse
button down and move to any location on the wire already connecting
the “Sine Wave” generator to the “Mux”.

346 CHAPTER 16: SIMULINK® Toolbox

FIGURE 16.6
The Example1 model and the scope illustrating the results of this simulation.

6. Finally, connect the right-side output port of the “Integrator” to the
lower-left input port of the “Mux”.

7. Pull down the file menu and click “save” to save your work. In this ex-
ample we already saved the name of this file, viz., Example1.mdl.

8. To continue, double click on the “Scope” to open the Scope window.
9. Finally, click on the model window to make sure it is in the forefront.

To start the simulation hold the keys “Ctrl” and “T” down simultane-
ously.

16.1 Mass-spring-damper dynamic system 347

You should see two curves appear on the scope. It will be the sine wave (yellow)
and the integral of the sine wave (magenta). The “Mux” allows for two inputs
into the scope. The model and the results of its execution are illustrated in
Fig. 16.6.

Of course, if you haven’t had any experience with experimental equipment
like oscilloscopes, sine-wave generators, multiplexers and the like, much of
this may seem a bit mysterious. In addition, the exercise above is only a look-
see exercise. It hardly demonstrates the many more powerful features available
within Simulink. However, more experience in your technical training and ed-
ucation will allow you to explore more productively this powerful tool and
clear up many of these matters. In addition, learning more about Simulink
by exercising many of the examples described in the help documentation will
help to understand the other toolboxes, e.g., the Control Systems Toolbox.
Furthermore, in courses on Dynamical Systems in mechanical and in electrical
engineering, many of the available textbooks ask the student to apply Simulink
to investigate the systems examined. Thus, there are numerous sources with
sample applications, including searching the computer web, that should prove
beneficial in learning how to apply this tool to solve more substantial prob-
lems in engineering and science. Additional details on the various utilities
applied in the above example can be found in the help. We next examine one
of the simplest yet quite useful dynamic system.

16.1 MASS-SPRING-DAMPER DYNAMIC SYSTEM

The simplest ordinary differential equation that can be used to investigate the
oscillation of a dynamic system is the following differential equation:

d2x

dt2
+ b

dx

dt
+ ω2

ox = A sin(ωt). (16.1)

The equation can be used to describe the motion of a mechanical system
modeled by a mass, spring and damper forced by a sinusoidal forcing func-
tion, where b = R/m is the resistance coefficient divided by the mass, m, of
a lumped object, ω2

o = k/m is the angular frequency of oscillation of the un-
damped (R = 0) motion with a spring-restoration force coefficient k. This is,
of course, Newton’s second law of motion applied to the forced motion of a
dynamic system modeled as a lumped mass acted on by an imposed harmonic
force with amplitude A = F/m, where F is the amplitude of force applied to
the system. This is one of the first problems typically investigated in a course
on dynamics when examining the oscillatory motion of a particle in one di-
mension. Let us rewrite this equation as follows:

d2x

dt2
= −b

dx

dt
− ω2

ox + A sin(ωt). (16.2)

348 CHAPTER 16: SIMULINK® Toolbox

FIGURE 16.7
The MassSpringDamperEx1.mdl model, the X-Y plotter and the scope illustrating the results of this
simulation are illustrated in this figure.

To solve a differential equation requires integration. Since this is a second or-
der equation we need to integrate twice to obtain a solution. A Simulink model
to solve this equation is illustrated in Fig. 16.7. Note that the input to “Inte-
grator1” is the sum of the right-hand side of the above equation, i.e., it is the
value of the acceleration, d2/dt2. The output is the speed, dx/dt , which is the
input to “Integrator2”. Finally, the output of “Integrator2” is the solution at
one time step. The details of the simulation illustrated in the figure is described
next.

The case illustrated is for ω2
o = k/m = 1 and b = R/m = 0.5. The initial position

x and the initial velocity dx/dt are equal to zero. In addition, the force on the
system at t = 0 is zero. The results indicate that for the forcing frequency of
ω = 1 radian per unit time and amplitude A = F/m = 1, the ultimate ampli-
tude of the motion of the mass is about 2. There is an approximate phase lag of
about π/2 between the response and the forcing. Since the forcing frequency
is very nearly at the resonance frequency the results illustrated in the figure are

16.2 Bouncing ball dynamic system 349

consistent with what is reported in the literature, e.g., in Becker (1953).1 As
an exercise vary the forcing frequency by double clicking on the “Sine Wave”
generator and change the number just below “Frequency (rad/sec):”. Try, e.g.,
frequencies in the range 0.5 ≤ ω ≤ 1.5 and compare your results with the ex-
ample just described. Find a text on mechanics (or dynamics) to compare your
results from Simulink with the theoretical results on this problem reported in
the literature.

16.2 BOUNCING BALL DYNAMIC SYSTEM

This section illustrates the application of initial conditions other than zero (as
in the previous section). The model is a modification of the bouncing ball
model by MathWorks (Copyright 1990–2010 The MathWorks, Inc.) described
in the help; it can be found by typing “Simulation of a bouncing ball” into the
search space just below the far left of the tool bar in the “? help” window. The
help window can be opened by clicking the circled question mark in the upper
tool bar on the Matlab desktop. Fig. 16.8 illustrates the application of initial
conditions to the integrals.

This bouncing-ball model is an example of a hybrid dynamic system. A hybrid
dynamic system is a system that involves both continuous dynamics, as well as,
discrete transitions where the system dynamics can change and the state values
can jump. The continuous dynamics of a bouncing ball is simply given by the
following equation

d2x

dt2
= −g, (16.3)

where g is the acceleration due to gravity, x is the vertical distance of the ball
after it is released from a specified height, xo at a specified speed, vo = dx/dt |o.
The ground is assumed to be at x = 0. Therefore, the system has two continuous
states: position, x, and velocity, v = dx/dt .

The hybrid system aspect of the model originates from the modeling of a col-
lision of the ball with the ground. If one assumes a partially elastic collision
with the ground, then the velocity before the collision, , and velocity after the
collision, v− , can be related by the coefficient of restitution of the ball, κ , as
follows:

v+ = −κv−, x = 0.

The bouncing ball therefore displays a jump in a continuous state (velocity) at
the transition condition, x = 0. This discussion is a paraphrase of the informa-

1Becker, R.A. (1953): Introduction to Theoretical Mechanics, McGraw-Hill Book Company, NY.

350 CHAPTER 16: SIMULINK® Toolbox

FIGURE 16.8
The bouncing ball model: The velocity and position of the ball are illustrated on the scopes.

tion on this problem given in the electronically available help files that come
with MATLAB.

Let us examine the application of the integrators in this example. The first in-
tegrator is labeled “Velocity”. Double clicking on top of this icon with the left
mouse opens a window that gives the integrator parameters that are set for this
form of the integrator. The external reset is set to “rising”. The initial condition
source is set to “external”. The “Show state port” and “Enable zero-crossing
detection” are the only items checked. This is illustrated in Fig. 16.9. The inte-
grator parameters for the integrator labeled “Position” is shown in Fig. 16.10.
The top left input port of the two integrators is the input. The bottom two ports

16.2 Bouncing ball dynamic system 351

FIGURE 16.9
The bouncing ball model: The velocity and position of the ball are illustrated on the scopes.

FIGURE 16.10
The bouncing ball model: The velocity and position of the ball are illustrated on the scopes.

352 CHAPTER 16: SIMULINK® Toolbox

allow the initial condition to change at particular intervals of time; in this ex-
ample, the time to change is associated with the time at which the ball hits the
ground. More details on the integrator options at your disposal is described in
the help. Search for integrator within the help. As pointed out in the help, “the
integrator block outputs the integral of its input at the current time step”. Read-
ing the help files and applying the various options will help you learn more
about the capabilities of the Simulink utilities. Certainly there are many ways
to construct models to solve a particular problem; it depends on the number
of utilities that you are familiar. Even with just the few utilities applied in this
and in the previous examples, a number of more complex problems can be
solved. This is illustrated in the next two examples on nonlinear dynamical
systems.

16.3 THE VAN DER POL OSCILLATOR

In this section we illustrate a model to solve the differential equation known as
the van der Pol oscillator. In investigations of nonlinear differential equations
and in the study of nonlinear dynamics this equation is one of the first models
typically investigated. It has been used, e.g., in the analysis of a vacuum-tube
circuit among other practical problems in engineering. The van der Pol equa-
tion is

d2x

dt2
= b

(
1 − x2

) dx

dt
− x. (16.4)

The interesting thing about finding equations like this one in the engineer-
ing and scientific literature is that we can investigate its behavior by applying
the technical computing capabilities in MATLAB/Simulink. In this chapter we
examine the application of Simulink to solve this equation.2

A Simulink model of this equation is illustrated in Fig. 16.11. In this example
we selected b = 5. Also, we had to change the initial condition for the device
named “Integrator”. The default initial condition of an “Integrator” is zero. To
change it you need to double click on the icon and change the initial condi-
tion. In this example the initial condition in the second integrator with name
“Integrator” was changed to 1. If it is zero, the solution for all time is zero.
Applying an initial condition like this one moves the solution from the origin
and closer to the limit cycle solution illustrated in the figure. The limit cycle is
a single closed curve in the “X-Y Graph” that the system approaches for large
times away from the initial condition. At time far from the initial condition
the system, in this case, reaches a periodic state.

2More can be found by searching in the help by clicking the question mark and searching for
“van der Pol”. A Simulink demo is one of the items that comes up when the search term used is as
quoted.

16.4 The Duffing oscillator 353

FIGURE 16.11
The van der Pol oscillator: The “Scope” illustrates the solution or output of the oscillator. The “X-Y Graph”
is a plot of X = dx/dt versus Y = x.

16.4 THE DUFFING OSCILLATOR

Fig. 16.12 illustrates the simulation of a forced nonlinear oscillator modeled
by Duffing’s equation, viz.,

d2x

dt2
= Ax − B x3 − C

dx

dt
+ F sinωt. (16.5)

354 CHAPTER 16: SIMULINK® Toolbox

FIGURE 16.12
Forced nonlinear oscillator: The “Scope” compares input forcing (yellow) and output displacement
(magenta). The “X-Y Graph” is a plot of X = dx/dt versus Y = x.

This is one of the now classical equations investigated in courses on nonlin-
ear dynamics. In the example illustrated in the figure, A = 1, B = 1, C = 0.22
and F = 0.3. The forcing frequency is ω = 1 rad/s. The latter can be verified by
double clicking on the “Sine Wave” icon; this operation opens a panel with
information about the output of the sine wave generator. For this set of con-
stants the phase portrait, the X-Y graph in the figure, evolves into a limit cycle
or periodic orbit called a “stable period 3 orbit” as described in detail in the
book by Guckenheimer and Holmes.3 This example, like the others presented
in this chapter, are intended to illustrate that you can study the properties of

3Guckenheimer, John, & Philip Holmes (1983): Nonlinear Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields, Springer-Verlag, NY.

Exercises 355

the solutions to differential equations numerically relatively easily by applying
the tools in Simulink (and in MATLAB).

There is a wealth of literature on the theory and the numerics of nonlinear
equations and, in particular, the Duffing and the van der Pol equations. The
theoretical results reported in Guckenheimer and Holmes helped the author
select the constants applied in this example. Suggestions for changes in the
constants are to be examined in the exercises at the end of this chapter.

EXERCISES

16.1 Reproduce the signal processing model, i.e., first example in this chap-
ter on the display of the sine and its integral. Execute the simulation
to make sure it works (i.e., compares favorably with the results in the
example). Next, do the following:
(a) Double click on the integrator and change the initial condition

from 0 to 1. Apply the change by clicking the button in the lower
right corner of the integrator function block. Execute the simu-
lation. What is the maximum value of the integral? What is the
minimum value of the integral?

(b) Double click on the sine wave icon and change the frequency
from 1 to 2 and the amplitude from 1 to 2. Apply the changes
by clicking the button in the lower right corner of the sine wave
source block. Execute the simulation. Note that the frequency is
doubled and the amplitude is doubled.

(c) Change the phase of the sine wave from 0 to pi/2. Make sure
that the amplitude and frequency are set equal to 1. Apply the
changes and execute the simulation. Note that the input function
is a cosine instead of a sine function.

16.2 Reproduce the bouncing-ball model and execute it to determine that
your reproduction is consistent with the example in this chapter. With
a working code examine changes in the coefficient of restitution. Con-
sider several values in the range 0.5 ≤ κ ≤ 0.9. Also examine changes in
the initial conditions for κ = 0.8. To change the value of κ you need
to double click on the icon for the coefficient of restitution, change
its value and apply it. The same is done to change the initial velocity
or the initial position. Once you examine a few different cases explain
what you found.

16.3 Reproduce the model for a forced spring-mass-damper mechanical sys-
tem. Remove the “X-Y Graph”, its connecting wires, the “Mux” and its
connecting wires. Then reattach the “Scope” to the wire attached to the
output of “Integrator2”. The model is the spring-mass-damper model
with a step change in the force applied at t = 0 as can be verified by
double clicking on the “Step” icon; change the “Step time” from the de-
fault value of 1 to zero if the time the step is applied is not equal to zero.

356 CHAPTER 16: SIMULINK® Toolbox

Set the resistance coefficient R/m to zero. Leave k/m = 1, i.e., the spring
constant coefficient. Execute the simulation. What is the frequency of
oscillation? Examine R/m = .25, 1, 2 and 4 to determine the effect of
increased damping on the solution. If you look this problem up in
a physics book on mechanics it is usually under the topic “damped
harmonic oscillator”. If R/m = 0, it is the harmonic oscillator solution
known as simple-harmonic motion; this should have been the solu-
tion that you found as part of the examination of the dynamic system
in this problem. Without damping (i.e., R = 0) the solution is a sinu-
soidal motion with constant amplitude. The frequency of oscillation is
the natural frequency, ωo = √

k/m = 1 in this case. Thus, it is not unex-
pected that a cycle of oscillation occurs over a time interval of 2π ; review
your results to make sure that this is the case. If ω2 = (R/m)2/2, then
the motion is critically damped. This means that the dynamic system
reaches its infinite time, constant valued solution without overshoot.
If ωo is less than this value, the system is said to be underdamped. If
ωo is greater than this value, the system is said to be overdamped. Set-
ting R/m = 2 leads to a critically damped behavior. Describe, from your
solutions for the range of R/m considered in this problem, the mean-
ing of underdamped, critically damped and overdamped response (as
reflected in the solution x) of the system for the mechanical system ex-
amined in this problem.

16.4 In the previous problem try the damping coefficient R/m = −0.25. De-
scribe the results. Notice how the amplitude grows with time. Thus,
with a negative resistance coefficient we have growth in the amplitude
of the solution. If you set k/m = 0, you can investigate exponential
growth. Create a problem that you provide a solution that deals with
the problem of exponential growth.

16.5 Reproduce the van der Pol oscillator model. Execute the simulation to
compare your results with the results in the example (this is, of course,
a necessary step to check your computer code). Next, set the damping
coefficient b = 0. Execute the simulation. The result should be simple-
harmonic motion of amplitude unity because the initial condition in
the second integrator was set equal to unity and period equal to 2π .
Next, examine the case for b = 1. Finally, examine b = 5. Note the
qualitative changes in the response function, i.e., in the plotted values
of x.

16.6 Reproduce the Duffing oscillator model. Execute the simulation to com-
pare your results with the results in the example. Set the parameters
A = B = 0. The result is forced harmonic motion at a single frequency.
Try examining the linear case, which means B = 0, and −1 ≤ A ≤ −0.1,
which means a spring. In all cases the motion ends up being a forced
harmonic motion of a single sinusoidal frequency. This is because the
cubic-nonlinear term was suppressed by setting B = 0. (There are many
other combinations that you can explore. However, be aware of the fact

Exercises 357

that some combinations of parameters lead to chaotic solutions and,
hence, may never settle down to a periodic state. There also may be
parameter selections that lead to unstable solutions.)

CHAPTER 17

Symbolics Toolbox

CONTENTS

Algebra 360
Polynomials 361
Vectors 363
Matrices............... 364

Calculus.......... 368
Laplace and Z
transforms 370
Generalized
functions∗ 371
Differential
equations 373
Implementation
of funtool,
MuPAD and help 374
The funtool 374
The MuPAD
notebook∗ and
Symbolic help 375

Exercises 377

THE OBJECTIVE OF THIS CHAPTER IS TO INTRODUCE THE
SYMBOLIC TOOLS AVAILABLE WITHIN MATLAB.

It is a useful set of tools for the application of mathematics in science and engi-
neering. Examples of the application of the Symbolic capabilities have already been
given elsewhere in this book to check analytic solutions found in the literature. In
addition, predictions based on the analytic solutions were compared with predic-
tions based on computational methods. The symbolic mathematical tools covered
in this chapter are:

■ Algebra: Polynomials, vectors and matrices.
■ Calculus: Differentiation and integration.
■ Transforms: Laplace and Z transforms.
■ Generalized functions: Heaviside and Dirac.
■ Systems of ordinary differential equations.
■ The funtool, MuPAD and help.

With the Symbolics toolbox MATLAB can be considered the “mathematical
handbook” for the students of the 21st century. In the old days science and
engineering students were required to purchase a “standard” mathematics
handbook. Today, there are very few students, if any, who own and use a math-
ematics handbook. The computer and tools like MATLAB have changed this
situation in a positive way. However, as for the second author of this book, it
has been an interesting exercise to demonstrate that MATLAB is this century’s
handbook. In this chapter an introduction to the application of Symbolics
follows a procedure based on a review of handbook information and provid-
ing examples for the kinds of information we were expected to look up in a
handbook and, hence, what we, sort of, expect students to find by applying
computer tools like MATLAB.

The main problem, if it is a problem at all, in the application of the symbolic
toolbox, or any other computer tool that allows the user to do symbolic anal-
ysis, is that to use the tool effectively you need to know something about the
mathematical questions being raised. In other words, if you want to differ-

Essential MATLAB for Engineers and Scientists. https://doi.org/10.1016/B978-0-08-102997-8.00024-5
Copyright © 2019 Daniel T. Valentine. Published by Elsevier Ltd. All rights reserved.

359

https://doi.org/10.1016/B978-0-08-102997-8.00024-5

360 CHAPTER 17: Symbolics Toolbox

entiate the function, f (x), with respect to the variable x, you need to know
the meaning of a function and the meaning of differentiation or finding the
derivative of f with respect to x, viz., finding df/dx.

Another example is finding the solutions of a quadratic equation. You need to
know what kind of equation this is and the meaning of solving an algebraic
equation of this type. Hence, if you know what to ask, MATLAB Symbolics can
be applied to help you find an answer to a symbolic mathematical question.

The application of symbolics to examine mathematical questions that can be
answered with the help of mathematical handbooks is addressed in this chap-
ter to illustrate the power of the symbolic tools available in MATLAB. Certainly
the tools are more powerful than the relatively simple examples presented in
this chapter. Once you are adept at using this toolbox, then you can extend
the application of this toolbox to examine more difficult questions that may
even be beyond the capabilities of more traditional applications of applied
mathematics to solve problems in science and in engineering.

The symbolic mathematical topics covered in a typical handbook are, e.g., alge-
bra, trigonometry, calculus, integration, differentiation and differential equa-
tions. The information provided in a handbook is to help the student, engineer
or scientist make progress in solving mathematical problems they confront
in their attempts to solve technical problems. A solid education in science,
technology, engineering and mathematics (STEM) provides the necessary back-
ground to utilize handbooks and/or tools like MATLAB in a productive way. Of
course, MATLAB like handbooks need to be used regularly to gain proficiency
in applying such tools as part of finding solutions. We will touch some of the
topics covered in handbooks to help guide the readers in their attempts to
apply the Symbolic toolbox within MATLAB. We will start with algebra includ-
ing linear algebra, vector algebra and matrix algebra. Then we will examine
differentiation and integration. This will be followed by investigating integral
transforms and, in particular, the Laplace transform. Then we will conclude by
investigating the symbolic solution of differential equations.

17.1 ALGEBRA

In Section 1.1.6 we introduced how to solve a system of linear equations. One
example applied the solve utility available in MATLAB Symbolics. Let us ex-
tend that example by solving the simultaneous system of quadratic equations

x2 + 3y = 0, y2 + 2x = 0.

Applying the same procedure illustrated in Section 1.1.6, we get the follow-
ing results by typing and executing the following command in the Command
Window. The results are also illustrated below.

17.1 Algebra 361

>> syms x y
>> [x y] = solve(x^2 + 3*y, y^2 + 2*x)

x =
0

-(-12)^(2/3)/2
-((3^(1/2)*(-12)^(1/3)*i)/2 + (-12)^(1/3)/2)^2/2
-((3^(1/2)*(-12)^(1/3)*i)/2 - (-12)^(1/3)/2)^2/2

y =
0

(-12)^(1/3)
- (3^(1/2)*(-12)^(1/3)*i)/2 - (-12)^(1/3)/2
(3^(1/2)*(-12)^(1/3)*i)/2 - (-12)^(1/3)/2

The results indicate that x and y each have four roots. Two are real and two
are complex. This points to the fact that MATLAB deals with complex num-
bers and, hence, not just real numbers. This is another important capability of
MATLAB. In MATLAB by default (unless you reassign them) i and j represent
the number known as

√−1.

17.1.1 Polynomials

Everyone reading this book certainly knows about the quadratic equation.
Most students of STEM subjects can recite, from memory, the roots of the
quadratic equation; this is helpful to check the results found by applying MAT-
LAB. The quadratic equation can be written as follows:

a x2 + b x + c = 0. (17.1)

Let us solve this equation using the solve utility in MATLAB. To do this we can
execute the following script:

clear;clc
syms a b c x
solve(a*x^2 + b*x + c)

The answer in the Command Window is

ans =

-(b + (b^2 - 4*a*c)^(1/2))/(2*a)
-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

362 CHAPTER 17: Symbolics Toolbox

Thus, as expected, the solutions of the quadratic equation are

x = − 1

2a

(
b ±

√
b2 − 4ac

)
(17.2)

For the two roots to be real numbers b2 ≥ 4ac. If the equality holds, then the
two roots are equal. If b2 < 4ac the roots are complex and unequal. An alter-
native one-line command can be used to solve this equation; this can be done
in the Command Window as follows

>> syms a b c x; solve(a*x^2+b*x+c)

The apostrophes indicate that what is between them is a symbolic expression.
The output of both procedures of the application of solve is a 2 × 1 symbolic
data-type array. Since this is a quadratic equation we expect to get two solu-
tions.

Next, let us examine the cubic polynomial

a x3 + b x2 + c x + d = 0. (17.3)

To find the roots of this equation we can execute the following script:

clear;clc
syms a b c d x
solve(a*x^3 + b*x^2 + c*x + d)

In this case, since we are solving a cubic, the answer (ans) is in a 3 × 1 sym-
bolic data-type array. The answer is rather lengthy however and, hence, it is not
reproduced here. It is produced in the command window.

Let us consider another example. Let us solve

ax4 + cx = 0.

The following commands were executed in the Command Window:

>> syms a c x; solve(a*x^4 + c*x);
>> solution = simplify(ans);
>> solution

solution =
0

(-c/a)^(1/3)
((3^(1/2)*i - 1)*(-c/a)^(1/3))/2

-((3^(1/2)*i + 1)*(-c/a)^(1/3))/2

17.1 Algebra 363

>> latex(solution)

ans =

\left(\begin{array}{c} 0\\ {\left(-\frac{c}{a}\right)}^{\frac{1}{3}}\\
\frac{\left(- 1 + \sqrt{3}\, \mathrm{i}\right)\,
{\left(-\frac{c}{a}\right)}^{\frac{1}{3}}}{2}\\
-\frac{\left(1 + \sqrt{3}\, \mathrm{i}\right)\,
{\left(-\frac{c}{a}\right)}^{\frac{1}{3}}}{2} \end{array}\right)

This answer (ans) was used in the word processor used by the second author;
the word processor implements Latex. This translation to Latex gives the fol-
lowing array of the four roots to this quartic equation:
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0(− c
a

) 1
3

(
−1+√

3 i
) (− c

a

) 1
3

2

−
(

1+√
3 i

) (− c
a

) 1
3

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Note that two of the roots are complex numbers.

Finally, let us examine the solution of three simultaneous linear equations with
the solve utility. Let us solve

x + y + z = 1, 2x + 3y + z = 1, x + y + 3z = 0.

Doing this in the Command Window, we get

>> syms x y z
>> [x y z] = solve(x + y + z - 1, 2*x + 3*y + z - 1, x + y + 3*z)

The solution of this system of equations leads to x = 3, y = −3/2 and z = −1/2.

Note that there are a variety of methods to implement the solve function (or
solution procedure utility) within Symbolics. If numerical solutions are ob-
tained, as in the last example, they need to be converted to double data types to
use them in MATLAB scripts (this was already illustrated in Section 1.1.6).

17.1.2 Vectors

The single row or single column arrays are vectors. Let us consider the following
3-component vectors:

x1 = (a1, b1, c1), x2 = (a2, b2, c2)

364 CHAPTER 17: Symbolics Toolbox

There are two ways to multiply these mathematical objects that most of the
students are familiar. They are the inner or dot product and the vector or cross
product. They can be found by applying the following script of Symbolic com-
mands (from the editor).

format compact

syms a1 a2 b1 b2 c1 c2 real

x1 = [a1,b1,c1]

x2 = [a2,b2,c2]

x1_dot_x2 = dot(x1,x2)

x1_cross_x2 = cross(x1,x2)

format

The results in the Command Window are

x1 =

[a1, b1, c1]

x2 =

[a2, b2, c2]

x1_dot_x2 =

a1*a2 + b1*b2 + c1*c2

x1_cross_x2 =

[b1*c2 - b2*c1, a2*c1 - a1*c2, a1*b2 - a2*b1]

The format compact was implemented to get the compact output illustrated
above. The last command, viz., format, was implemented to reset the default
output-display format in the Command Window. The solution can be written
as follows:

x1 · x2 = a1a2 + b1b2 + c1c2

The dot product is a scalar.

x1 × x2 = (b1c2 − b2c1, a2c1 − a1c2, a1b2 − a2b1)

The cross product is a vector. It is a three-component vector (the same number
of components as the vectors that are multiplied to get this result).

17.1.3 Matrices

Let us consider the following mathematical objects known as matrices. We can
add and subtract the two objects. We can multiply and divide the two objects.

17.1 Algebra 365

We will do these operations using the Symbolic toolbox

Ma =
(

a11 a12
a21 a22

)

Mb =
(

b11 b12

b21 b22

)

The following script was executed in MATLAB:

format compact
syms a11 a12 a21 a22 b11 b12 b21 b22
Ma = [a11 a12; a21 a22]
Mb = [b11 b12; b21 b22]
Msum = Ma + Mb
Mproduct = Ma*Mb

The results in the Command Window are

Ma =
[a11, a12]
[a21, a22]
Mb =
[b11, b12]
[b21, b22]
Msum =
[a11 + b11, a12 + b12]
[a21 + b21, a22 + b22]
Mproduct =
[a11*b11 + a12*b21, a11*b12 + a12*b22]
[a21*b11 + a22*b21, a21*b12 + a22*b22]

The addition of the two matrices involve term-by-term addition.

Ma ± Mb =
(

a11 ± b11 a12 ± b12

a21 ± b21 a22 ± b22

)
.

The product leads to a matrix of the same size as the matrices that are mul-
tiplied; each term in the result is the multiplication of a row of Ma times
a column on Mb summed together. Study the product matrix, as written below,
to verify the matrix multiplication process. The product of the two matrices is

Ma Mb =
(

a11 b11 + a12 b21 a11 b12 + a12 b22

a21 b11 + a22 b21 a21 b12 + a22 b22

)
.

366 CHAPTER 17: Symbolics Toolbox

Let us analyze a number of properties of the following matrix:

Ma =
(

c11 c12
c21 c22

)

syms c11 c12 c21 c22 real
Mc = [c11 c12; c21 c22]
Mcdet = det(Mc);
Mcinv = inv(Mc);
Mc*inv(Mc);
disp(’ Mc * Mcinv = Imatrix’)
Imatrix = simple(ans)
Mcdet
Mcinv
[EigenVectorsMc EigenValuesMc] = eig(Mc)

Except for the eigenvectors and eigenvalues, the following output was in the
Command Window. The latter were converted to Latex and are reported below.

Mc =
[c11, c12]
[c21, c22]
Mc * Mcinv = Imatrix
Imatrix =
[1, 0]
[0, 1]
Mcdet =
c11*c22 - c12*c21
Mcinv =
[c22/(c11*c22 - c12*c21), -c12/(c11*c22 - c12*c21)]
[-c21/(c11*c22 - c12*c21), c11/(c11*c22 - c12*c21)]

The eigenvalues associated with this matrix are
(

c11
2 + c22

2 −
√

c112−2 c11 c22+c222+4 c12 c21
2 0

0 c11
2 + c22

2 +
√

c112−2 c11 c22+c222+4 c12 c21
2

)
.

This is a result of diagonalizing the matrix (a process interpreted geometrically
as a rotation of the coordinate system to find the coordinates in which the
matrix only has finite diagonal terms). The coordinate system at which this
occurs is given by the orthogonal eigenvectors. The corresponding eigenvectors
for this example are
⎛
⎝ c11

2 + c22
2 −

√
c112−2 c11 c22+c222+4 c12 c21

2
c21

− c22
c21

c11
2 + c22

2 +
√

c112−2 c11 c22+c222+4 c12 c21
2

c21
− c22

c21

1 1

⎞
⎠ .

17.1 Algebra 367

Let us next consider the analysis of a three-by-three symmetric matrix, viz.,

M =
⎛
⎝ a d e

d b f
e f c

⎞
⎠

This matrix was examined in detail by implementing the following script. It is
an important mathematical object that plays an important role in, e.g., struc-
tural mechanics where it is the form of the stress tensor.

format compact
syms a b c d e f real
M = [a d e

d b f
e f c]

Mdet = det(M);
Minv = inv(M);
M*inv(M);
disp(’ M * Minv = Imatrix’)
Imatrix = simple(ans)
Mdet
Minv
[EigenVectorsM EigenValuesM] = eig(M)
format

The results in the Command Window, except for the rather lengthy eigenvalue,
eigenvector and inverse expressions are as follows:

M =
[a, d, e]
[d, b, f]
[e, f, c]
M * Minv = Imatrix

Imatrix =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
Mdet =
- c*d^2 + 2*d*e*f - b*e^2 - a*f^2 + a*b*c

We know that the inverse of M is determined correctly because MM−1 = I,
where I is the identity matrix. It is left as an exercise to examine the inverse
matrix and the results of the eigenvalue problem solved by the Symbolic tools
in MATLAB.

368 CHAPTER 17: Symbolics Toolbox

If the matrix represents the state of stress at a point in a solid material, the
eigenvalues would be the principal stresses and the eigenvectors the principal
directions. This information is important in the analysis of the strength of ma-
terials. Similar matrices appear in modeling the mechanics of fluids.

17.2 CALCULUS

In this section we examine symbolic differentiation and integration. We will
do this simultaneously because they are essentially inverse operation. Let us
examine the quadratic function

f = ax2 + bx + c. (17.4)

The derivative of this equation is

df

dx
= 2ax + b (17.5)

This can be verified by applying the Symbolic tools in MATLAB. We can do this
as follows:

format compact
syms x a b c real
f = a*x^2 + b*x + c
disp(’dfdx = diff(f,x) was executed to get:’)
dfdx = diff(f,x)
% Integration
disp(’f = int(dfdx,x) was executed to get:’)
f = int(dfdx,x)
disp(’ Note that the constant of integration, c, is implied.’)
disp(’ Hence, to include it you need to add c to f:’)
f = f + c
disp(’f = expand(f) was executed to get:’)
f = expand(f)
disp(’ Thus, the function f is recovered (as expected).’)
format

The output to the Command Window is

f =
a*x^2 + b*x + c
dfdx = diff(f,x) was executed to get:
dfdx =
b + 2*a*x
f = int(dfdx,x) was executed to get:

17.2 Calculus 369

f =
x*(b + a*x)
Note that the constant of integration, c, is implied.
Hence, to include it you need to add c to f:

f =
c + x*(b + a*x)
f = expand(f) was executed to get:
f =
a*x^2 + b*x + c
Thus, the function f is recovered (as expected).

Thus, we verified the formula for df/dx. The next step is to verify the results
of differentiation by integrating. This was done in the script given above by
executing int(dfdx,x). The result obtained is f to within a constant. The in-
tegration tool does not explicitly include the arbitrary constant of integration.
Hence, a constant needs to be added as illustrated in the above example. Then
the function f with the added constant is expanded (expand(f)), leading to
the result sought, i.e., the recovery of the original function f .

Let us examine a second example. It is the examination of

f = a sin2 x + b cosx (17.6)

Differentiating this formula and, subsequently, integrating df/dx, we get the
following: The script in the editor that was executed is

format compact
syms x a b c real
f = a*sin(x)^2 + b*cos(x)
dfdx = diff(f,x)
% Integration
ff = int(dfdx,x)
ff = expand(ff)
format

The output to the Command Window is

f =
a*sin(x)^2 + b*cos(x)
dfdx =
2*a*cos(x)*sin(x) - b*sin(x)
ff =
2*(cos(x)/2 + 1/2)*(2*a + b - 2*a*(cos(x)/2 + 1/2))
ff =
a + b + b*cos(x) - a*cos(x)^2

370 CHAPTER 17: Symbolics Toolbox

Note that the result of the integration of df/dx is (it is ff in the script; it is f

below)

f = a + b + b cosx − a cos2 x

Substituting cos2 x = 1 − sin2 x, we get

f = a sin2 x + b cosx + b + c

where c is the arbitrary constant of integration. Since it is arbitrary, let us select
it as c = −b. Thus,

f = a sin2 x + b cosx

This is the result sought; it is the same as given in the original equation,
Eq. (17.6). Thus, these tools not only allow you to do differentiation and in-
tegration of a variety of problems you may confront in practice or wish to
examine as part of your self-education, it helps provide insight into the con-
nection between the operation of differentiation and the inverse operation of
integration. We needed to be aware of the arbitrary constant of integration and
what role it plays in the recovery of the formula that was differentiated. We
needed to know that the derivative of a constant is identically zero.

17.3 LAPLACE AND Z TRANSFORMS

In this section the useful transforms known as the Laplace and the Z trans-
forms are introduced by way of an example. Transforms are useful in applied
mathematics as applied to examine engineering and scientific problems. There
are other transforms available in Symbolics that could be investigated as well.
We limit this primarily to the Laplace transform because it is introduced to
undergraduates as part of the mathematics background necessary to examine
dynamical systems. We examine the Z transform because it is interesting. In
addition, we demonstrate the application of ezplot that is available in the
Symbolic tools to help examine graphically various functions.

Let us examine the Laplace and the Z transforms of the function y = sinx.
Execute the following set of commands either in the Command Window or
from the editor.

syms x t w
y = sin(x)
Ly = laplace(y)
yy = ilaplace(Ly,x)
Zy = ztrans(y)
ezplot(Ly)
hold on

17.4 Generalized functions∗ 371

FIGURE 17.1
Comparison if sinx, its Laplace and Z transforms.

ezplot(Zy)

ezplot(y)

The script in sequence determines the Laplace transform of y, Ly, it finds the
inverse Laplace transform of the result to illustrate that you recover y, it deter-
mines the Z transform, Zy, (whatever that is) and it plots y, Ly and Zy. The
results, as given in the Command Window, are as follows:

y =

sin(x)

Ly =

1/(s^2 + 1)

yy =

sin(x)

Zy =

(z*sin(1))/(z^2 - 2*cos(1)*z + 1)

The graphical results are in Fig. 17.1.

17.4 GENERALIZED FUNCTIONS∗

In this section we examine very useful functions that are utilized in many sci-
entific and engineering analyses. The first of the two functions examine is the
Heaviside step function, H(x). It is a function that is zero for x < 0, it is equal
to 1/2 at x = 0 and it is equal to unity for x > 1. It is a built in function in
MATLAB and in MATLAB Symbolics. To examine it the following script was
executed.

372 CHAPTER 17: Symbolics Toolbox

FIGURE 17.2
The Heaviside step function, H(x).

syms x
y = heaviside(x)
dydx = diff(y,x)
%
x = -1:.01:1;
y = heaviside(x);
plot(x,y,’--o’),title(’The Heaviside step function’)
xlabel(’x’);ylabel(’y’);

The output to the Command Window is

y =
heaviside(x)

dydx =
dirac(x)

Thus, the derivative of the Heaviside step function is the Dirac delta function
(which we will examine next). A graphical illustration of the Heaviside step
function is given in Fig. 17.2.

To use the Symbolic tools to examine the Dirac delta function let us execute
the following script:

syms x
y = dirac(x)
I1 = int(y,x)
I2 = int(y,x,-1,1)

17.5 Differential equations 373

The results in the Command Window are as follows:

y =
dirac(x)
I1 =
heaviside(x)
I2 =
1

This illustrates that the indefinite integral of the Dirac function is the Heaviside
function. It also illustrates that the definite integral that includes x = 0 is one.
The Dirac function is infinite at x = o and it is zero everywhere else. It x = 0 is
not included in the range of integration the integral is zero. Note that where the
delta function is infinite and, hence, where the Heaviside step function jumps
from zero to one can be changed by changing the x coordinate to another
origin where the argument of the two functions is equal to zero.

17.5 DIFFERENTIAL EQUATIONS

The function dsolve is an ordinary differential equation and a system of or-
dinary differential equation (ODE) solver. We will examine two examples in
this section. One is the solution of a single ODE and a system of ODEs. Let us
examine the equation

d3y

dx3
= a x2.

To solve this equation all we need to do is to execute the following command:

>> dsolve(’D3y= a*x^2’,’x’)

The result of executing this command is

ans =
(a*x^5)/60 + (C2*x^2)/2 + C3*x + C4

Thus, the solution is

a x5

60
+ C1 x2

2
+ C2 x + C3

where C1, C2 and C3 are the three arbitrary constants of integration. The proce-
dure for solving a differential equation is to integrate. In this case because it is
a third-order differential equation that we solved, it required three integrations
and, hence, the result is to within three arbitrary constants.

374 CHAPTER 17: Symbolics Toolbox

In the next example we solve two equations simultaneously. In addition, we
specify constraints (or boundary conditions). The equations to be solved are

df

dt
= 3f + 4g,

dg

dt
= −4f + 3g.

This system of equations, since it is second order, is subject to two constraints.
In this example they are f (0) = 0 and g(0)− 1, which can be interpreted as ini-
tial conditions. The solution can be obtained by implementing the following
command in MATLAB:

[f, g] = dsolve(’Df = 3*f + 4*g, Dg = -4*f + 3*g’,’f(0) = 0, g(0) = 1’)

The solution is

f =
sin(4*t)*exp(3*t)
g =
cos(4*t)*exp(3*t)

Thus,

f = sin (4t) exp3t , g = cos (4t) exp3t .

The dsolve function is a powerful function to apply to try to find analytic so-
lutions to systems of ODEs.

17.6 IMPLEMENTATION OF FUNTOOL, MUPAD AND
HELP

This is the last section of this chapter. In this section we illustrate funtool, an
interesting utility to examine graphically a variety of functions. The MuPAD
capability to create your own notebooks associated with your own investiga-
tions is introduced. Finally, the help documents that come with MATLAB that
are related to Symbolics is reviewed.

17.6.1 The funtool

In the Command Window type funtool and execute the command. This is
done as follows:

>> funtool

17.6 Implementation of funtool, MuPAD and help 375

FIGURE 17.3
The function tool.

The three windows illustrated in Fig. 17.3 are opened. If you type a function
you are interested in examine in the space defining f , you examine it by hitting
<Enter>. If you are interested in examining the capabilities of this tool click the
Demo button. This tool provides an interesting and convenient way to examine
graphically any function you wish to investigate.

17.6.2 The MuPAD notebook∗ and Symbolic help

If you are interested in creating a notebook within MATLAB to examine a sub-
ject under investigation that requires symbolic among other tools to study,
then the MuPAD notebook environment may be of interest. To open a new
notebook type the following command in the Command Window and exe-
cute it.

>> mupad

The window illustrated in Fig. 17.4 is opened. Examine the tools on the tool
bar to learn how to input text as well as enter commands that allow you to
execute Symbolic commands within this notebook environment.

Finally, to get help on using mupad and other features of the Symbolic tools click
the circled question mark, ‘?’, just below the word “Help” on the top tool bar.
This opened the help window illustrated in Fig. 17.5. To get to the Symbolics
help click on Symbolic Math Toolbox in the contents palette. The information
in the right-hand pane will change to the information in Fig. 17.6. Note that
there are examples, help for MuPAD and demos that are quite useful.

376 CHAPTER 17: Symbolics Toolbox

FIGURE 17.4
The notebook tool.

FIGURE 17.5
The MATLAB help documents: Click item in red box on the list of tools.

Exercises 377

FIGURE 17.6
The help documents on the Symbolic tools.

EXERCISES

17.1 Find the derivatives of cosx, and x2 exp2x .
17.2 Integrate the function y = 3x2 from x = 0 to x = 10.

APPENDIX A

Syntax: Quick Reference

In this appendix we offer examples of the MATLAB syntax most commonly
used in this book.

A.1 EXPRESSIONS

x = 2 ^ (2 * 3) / 4;
x = A \ b; % solution of linear equations
a == 0 & b < 0 % a equals 0 AND b less than 0
a ~= 4 | b > 0 % a not equal to 4 OR b greater than 0

A.2 FUNCTION M-FILES

function y=f(x) % save as f.m
% comment for help

function [out1, out2] = plonk(in1, in2, in3) % save as plonk.m
% Three input arguments, two outputs

...

function junk % no input/output arguments; save as junk.m

[t, x] = ode45(@lorenz, [0 10], x0); % function handle with @

A.3 GRAPHICS

plot(x, y), grid % plots vector y against vector x on a grid

plot(x, y, ’b--’) % plots a blue dashed line

plot(x, y, ’go’) % plots green circles

plot(y) % if y is a vector plots elements against row numbers
% if y is a matrix, plots columns against row numbers 379

380 APPENDIX A: Syntax: Quick Reference

plot(x1, y1, x2, y2) % plots y1 against x1 and
y2 against x2 on same graph

semilogy(x, y) % uses a log10 scale for y

polar(theta, r) % generates a polar plot

A.4 if AND switch

if condition
statement % executed if condition true

end;

if condition
statement1 % executed if condition true

else
statement2 % executed if condition false

end;

if a == 0 % test for equality
x = -c / b;

else
x = -b / (2*a);

end;

if condition1 % jumps off ladder at first true condition
statement1

elseif condition2 % elseif one word!
statement2

elseif condition3
statement3

...
else
statementE

end;
if condition statement1, else statement2, end % command line

switch lower(expr) % expr is string or scalar
case {’linear’,’bilinear’}
disp(’Method is linear’)

case ’cubic’
disp(’Method is cubic’)

case ’nearest’
disp(’Method is nearest’)

Syntax: Quick Reference 381

otherwise
disp(’Unknown method.’)

end

A.5 for AND while

for i = 1:n % repeats statements n times
statements

end;

for i = 1:3:8 % i takes values 1, 4, 7
...

end;

for i = 5:-2:0 % i takes values 5, 3, 1
...

end;

for i = v % index i takes on each element of vector v
statements

end;

for v = a % index v takes on each column of matrix a
statements

end;

for i = 1:n, statements, end % command line version

try,
statements,

catch,
statements,

end

while condition % repeats statements while condition is true
statements

end;

while condition statements, end % command line version

A.6 INPUT/OUTPUT

disp(x)

382 APPENDIX A: Syntax: Quick Reference

disp(’Hello there’)

disp([a b]) % two scalars on one line

disp([x’ y’]) % two columns (vectors x and y
must be same length)

disp([’The answer is ’, num2str(x)])

fprintf(’\n’) % new line

fprintf(’%5.1f\n’, 1.23) % **1.2

fprintf(’%12.2e\n’, 0.123) % ***1.23e-001

fprintf(’%4.0f and %7.2f\n’, 12.34, -5.6789)
% **12 and **-5.68

fprintf(’Answers are: %g %g\n’, x, y)
% matlab decides on format

fprintf(’%10s\n’, str) % left-justified string

x = input(’Enter value of x: ’)

name = input(’Enter your name without apostrophes: ’, ’s’)

A.7 load/save

load filename % retrieves all variables
from binary file filename.mat

load x.dat % imports matrix x from ASCII file x.dat
save filename x y z % saves x y and z in filename.mat
save % saves all workspace variables

in matlab.mat
save filename x /ascii % saves x in filename (as ASCII file)

A.8 VECTORS AND MATRICES

a(3,:) % third row

a(:,2) % second column

Syntax: Quick Reference 383

v(1:2:9) % every second element from 1 to 9
v([2 4 5]) = [] % removes second, fourth and fifth elements

v(logical([0 1 0 1 0])) % second and fourth elements only

v’ % transpose

APPENDIX B

Operators

Precedence Operators

1 ()

2 ˆ .ˆ ’ .’ (pure transpose)

3 + (unary plus) - (unary minus) ˜ (NOT)

4 * / \ .* ./ .\
5 + (addition) - (subtraction)

6 :

7 > < >= <= == ˜=

8 & (AND)

9 | (OR)

(See Help on operator precedence.)

385

APPENDIX C

Command and Function: Quick Reference

This appendix lists most of the MATLAB commands and functions used in the
text, along with a few others. For a complete list by category (with links to
detailed descriptions) see MATLAB: Reference: MATLAB Function Reference:
Functions by Category in the online documentation.

The command help by itself displays a list of all the function categories (each
in its own directory).

C.1 GENERAL-PURPOSE COMMANDS

demo Run demos
help Online help
helpwin Display categories of functions with links to each category
lookfor Keyword search through help entries
type List M-files
what Directory listing of M- and MAT-files
which Locate functions and files

C.1.1 Managing variables and the workspace

clear Clear variables and functions from memory
disp Display matrix or text
length Length of vector
load Retrieve variables from disk
save Save workspace variables to disk
size Array dimensions
who, whos List variables in workspace

C.1.2 Files and the operating system

beep Produce beep sound
cd Change current working directory
delete Delete file 387

388 APPENDIX C: Command and Function: Quick Reference

diary Save text of MATLAB session
dir Directory listing
edit Edit M-file
! Execute operating system command

C.1.3 Controlling the Command Window

clc Clear Command Window
echo Echo commands in script
format Set output format for disp
home Send cursor home
more Control paged output

C.1.4 Starting and quitting MATLAB

exit Terminate MATLAB
quit Terminate MATLAB
startup Execute M-file when MATLAB starts

C.2 LOGICAL FUNCTIONS

all True if all elements of vector are true (nonzero)
any True if any element of vector is true
exist Check if variable or file exists
find Find indices of nonzero elements
is* Detect various states
logical Convert numeric values to logical values

C.3 MATLAB PROGRAMMING TOOLS

error Display error message
eval Interpret string containing MATLAB expression
feval Function evaluation
for Repeat statement specific number of times
global Define global variable
if Conditionally execute statements
persistent Define persistent variable
switch Switch among several cases
try Begin try block
while Repeat statements conditionally

Command and Function: Quick Reference 389

C.3.1 Interactive input

input Prompt user for input
keyboard Invoke keyboard as script file
menu Generate menu of choices for user input
pause Wait for user response

C.4 MATRICES

eye Identity matrix
linspace Vector with linearly spaced elements
ones Matrix of ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
zeros Matrix of zeros
: (colon) Vector with regularly spaced elements

C.4.1 Special variables and constants

ans Most recent answer
eps Floating-point relative accuracy

i or j
√−1

Inf Infinity
NaN Not-a-Number
nargin, nargout Number of actual function arguments
pi 3.14159 26535 897 . . .

realmax Largest positive floating-point number
realmin Smallest positive floating-point number
varargin, varargout Pass or return variable numbers of arguments

C.4.2 Time and date

calendar Calendar
clock Wall clock (complete date and time)
date Actual date
etime Elapsed time
tic, toc Stopwatch
weekday Day of week

C.4.3 Matrix manipulation

cat Concatenate arrays
diag Create or extract diagonal

390 APPENDIX C: Command and Function: Quick Reference

fliplr Flip in left/right direction
flipud Flip in up/down direction
repmat Replicate and tile array
reshape Change shape
rot90 Rotate 90◦
tril Extract lower tridiagonal part
triu Extract upper tridiagonal part

C.4.4 Specialized matrices

gallery Test matrices
hilb Hilbert matrix
magic Magic square
pascal Pascal matrix
wilkinson Wilkinson’s eigenvalue test matrix

C.5 MATHEMATICAL FUNCTIONS

abs Absolute value
acos, acosh Inverse cosine, inverse hyperbolic cosine
acot, acoth Inverse cotangent, inverse hyperbolic cotangent
acsc, acsch Inverse cosecant, and inverse hyperbolic cosecant
angle Phase angle
asec, asech Inverse secant, inverse hyperbolic secant
asin, asinh Inverse sine, inverse hyperbolic sine
atan, atanh Inverse tangent (two quadrant), inverse hyperbolic tangent
atan2 Inverse tangent (four quadrant)
bessel Bessel function
ceil Round up
conj Complex conjugate
cos, cosh Cosine, hyperbolic cosine
cot, coth Cotangent, hyperbolic cotangent
csc, csch Cosecant, hyperbolic cosecant
erf Error function
exp Exponential
fix Round toward zero
floor Round down
gamma Gamma function
imag Imaginary part
log Natural logarithm
log2 Dissect floating-point numbers into exponent and mantissa

Command and Function: Quick Reference 391

log10 Common logarithm
mod Modulus (signed remainder after division)
rat Rational approximation
real Real part
rem Remainder after division
round Round toward nearest integer
sec, sech Secant, hyperbolic secant
sign Signum function
sin, sinh Sine, hyperbolic sine
sqrt Square root
tan, tanh Tangent, hyperbolic tangent

C.6 MATRIX FUNCTIONS

det Determinant
eig Eigenvalues and eigenvectors
expm Matrix exponential
inv Matrix inverse
poly Characteristic polynomial
rank Number of linearly independent rows or columns
rcond Condition estimator
trace Sum of diagonal elements
{}\ and / Linear equation solution

C.7 DATA ANALYSIS

cumprod Cumulative product
cumsum Cumulative sum
diff Difference function
fft One-dimensional fast Fourier transform
max Largest element
mean Average value of elements
median Median value of elements
min Smallest element
prod Product of elements
sort Sort in ascending order
std Standard deviation
sum Sum of elements
trapz Trapezoidal rule for numerical integration

392 APPENDIX C: Command and Function: Quick Reference

C.8 POLYNOMIAL FUNCTIONS

polyfit Fit polynomial to data
polyval Evaluate polynomial
roots Find polynomial roots

C.9 FUNCTION FUNCTIONS

bvp4c Solve two-point boundary value problems for ODEs
fmin Minimize function of one variable
fmins Minimize function of several variables
fzero Find zero of function of one variable
ode23, ode23s,
ode45 Solve initial value problems for ODEs
quad Numerical integration

C.10 SPARSE MATRIX FUNCTIONS

full Convert sparse matrix to full matrix
sparse Construct sparse matrix from nonzeros and subscripts
spy Visualize sparse matrix

C.11 CHARACTER STRING FUNCTIONS

char Characters from ASCII codes
double ASCII codes of characters
lower Convert string to lower case
sprintf Write formatted data to string
str2mat String-to-matrix conversion
strcat String concatenation
strcmp Compare strings
upper Convert string to upper case

C.12 FILE I/O FUNCTIONS

fclose Close one or more open files
feof Test for end-of-file
fopen Open file or obtain information about open files
fprintf Write formatted data to file
fread Read binary data from file

Command and Function: Quick Reference 393

fscanf Read formatted data from file
fseek Set file position indicator
ftell Get file position indicator
fwrite Write binary data to file

C.13 2D GRAPHICS

bar Bar graph
grid Grid lines
hist Histogram plot
loglog Log-log scale plot
plot Linear plot
polar Polar coordinate plot
semilogx Semi-log scale plot
semilogy Semi-log scale plot
text Text annotation
title Graph title
xlabel x-axis label
ylabel y-axis label
zoom Zoom in and out on 2D plot

C.14 3D GRAPHICS

clabel Contour plot elevation label
comet3 Animated 3D plot
contour Contour plot in 2D
contour3 Contour plot in 3D
mesh 3D mesh surface
meshc 3D mesh surface with contour plot
meshgrid X and Y arrays for 3D plots
plot3 Line plot in 3D
quiver Quiver plot
surf Shaded surface
surfl Shaded surface with lighting
view Rotation of 3D figure
zlabel z-axis label

C.15 GENERAL

axes Create axes object
axis Control axis scaling and appearance

394 APPENDIX C: Command and Function: Quick Reference

cla Clear axes
clf Clear current figure
colorbar Display color bar (color scale)
colormap Set color look-up table (list of colormaps)
drawnow Complete any pending drawing
figure Create figure (graph) windows
fplot Plot function
gca Get current axes handle
gcf Get current figure handle
gco Return handle of current graphics object
get Get graphics object properties
ginput Graphical input from mouse or cursor
gtext Mouse placement of text
set Set graphics object properties
subplot Create axes in tiled positions

APPENDIX D

Solutions to Selected Exercises

CHAPTER 1
1.1 a = 3;

b = 5;
sum = a + b;
difference = a - b;
product = a * b;
quotient = a / b;

CHAPTER 2
2.1 (a) Comma should be replaced by decimal point

(e) Asterisk should be omitted
(f) Exponent must be integer

(h) Comma should be replaced by decimal point
2.2 (b) Decimal point not allowed

(c) First character must be letter
(d) Quotes not allowed
(h) Blanks not allowed
(i) Allowed but not recommended
(k) Asterisk not allowed
(l) Allowed but not recommended

2.3 (a) p + w/u
(b) p + w/(u + v)
(c) (p + w/(u+v))/(p + w/(u-v))
(d) sqrt(x)
(e) y^(y+z)
(f) x^(y^z)
(g) (x^y)^z
(h) x - x^3/(3*2) + x^5/(5*4*3*2)

2.4 (a) i = i + 1
(b) i = iˆ3 + j
(c) if e > f

g = e
else 395

396 APPENDIX D: Solutions to Selected Exercises

g = f
end

(d) if d > 0
x = -b

end
(e) x = (a + b)/(c * d)

2.5 (a) Expression not allowed on left-hand side
(b) Left-hand side must be valid variable name
(c) Left-hand side must be valid variable name

2.6 a = 2;
b = -10;
c = 12;
x = (-b + sqrt(b ^ 2 - 4 * a * c)) / (2 * a)

2.7 gallons = input(’Enter gallons: ’);
pints = input(’Enter pints: ’);
pints = pints + 8 * gallons;
liters = pints / 1.76

2.8 distance = 528;
liters = 46.23;
kml = distance / liters;
l100km = 100 / kml;
disp(’Distance Liters used km/L L/100km’);
disp([distance liters kml l100km]);

2.9 t = a;
a = b;
b = t;

2.10 a = [a b]; % make ’a’ into a vector
b = a(1);
a(1) = [];

2.11 (a) c = input(’Enter Celsius temperature: ’);
f = 9 * c / 5 + 32;
disp([’The Fahrenheit temperature is:’ num2str(f)]);

(b) c = 20 : 30;
f = 9 * c / 5 + 32;
format bank;
disp(’ Celsius Fahrenheit’);
disp([c’ f’]);

2.12 degrees = 0 : 10 : 360;
radians = degrees / 180 * pi;
format bank;
disp(’ Degrees Radians’);
disp([degrees’ radians’]);

2.13 degrees = 0 : 30 : 360;
radians = degrees / 180 * pi;
sines = sin(radians);

Solutions to Selected Exercises 397

cosines = cos(radians);
tans = tan(radians);
table = [degrees’ sines’ cosines’ tans’]

2.14 for int = 10 : 20
disp([int sqrt(int)]);

end
2.15 sum(2 : 2 : 200)
2.16 m = [5 8 0 10 3 8 5 7 9 4];

disp(mean(m))
2.17 x = 2.0833, a = 4
2.18 % With for loop

i = 1;
x = 0;
for a = i : i : 4

x = x + i / a;
end

% With vectors
i = 1;
a = i : i : 4;
x = i ./ a;
sum(x)

2.19 (b) n = input(’Number of terms? ’);
k = 1 : n;
s = 1 ./ (k .\char136 2);
disp(sqrt(6 * sum(s)))

2.21 r = 5;
c = 10;
l = 4;
e = 2;
w = 2;
i = e / sqrt(r ^ 2 + (2 * pi * w * l -

1 / (2 * pi * w * c)) ^ 2)
2.22 con = [200 500 700 1000 1500];

for units = con
if units <= 500
cost = 0.02 * units;

elseif units <= 1000
cost = 10 + 0.05 * (units - 500);

else
cost = 35 + 0.1 * (units - 1000);

end
charge = 5 + cost;
disp(charge)

end

398 APPENDIX D: Solutions to Selected Exercises

2.24 money = 1000;

for month = 1 : 12

money = money * 1.01;

end

2.26 t = 1790 : 10 : 2000;

p = 197273000 ./ (1 + exp(-0.03134 * (t - 1913.25)));

disp([t’ p’]);

pause;

plot(t,p);

2.27 (a) r = 0.15;

l = 50000;

n = 20;

p = r * l * (1 + r / 12) ^ (12 * n) / ...

(12 * ((1 + r / 12) ^ (12 * n) 1))

2.28 (a) r = 0.15;

l = 50000;

p = 800;

n = log(p / (p - r * l / 12)) / (12 * log(1 + r / 12))

CHAPTER 3

3.1 You should get a picture of tangents to a curve.
3.2 (a) 4

(b) 2
(c) Algorithm (attributed to Euclid) finds the HCF (highest common

factor) of two numbers using the fact that it divides exactly into
the difference between the two numbers, and that, if the numbers
are equal, they are equal to their HCF.

3.3 f = input(’Enter Fahrenheit temperature: ’);

c = 5 / 9 * (f {\minuscda} 32);

disp([’The Celsius temperature is: ’ num2str(c)]);

3.4 a = input(’Enter first number: ’);

b = input(’Enter second number: ’);

if a < b

disp([num2str(b) ’ is larger.’]);

elseif a > b

disp([num2str(a) ’ is larger.’]);

else

disp(’Numbers are equal.’);

end

Solutions to Selected Exercises 399

3.6 1. Input a, b, c, d, e, f
2. u = ae - db, v = ec - bf
3. If u = 0 and v = 0, then

Lines coincide
Otherwise if u = 0 and v �= 0, then

Lines are parallel
Otherwise

x = v/u, y = (af - dc)/u
Print x, y

4. Stop

a = input(’Enter a: ’);
b = input(’Enter b: ’);
c = input(’Enter c: ’);
d = input(’Enter d: ’);
e = input(’Enter e: ’);
f = input(’Enter f: ’);
u = a * e - b * d;
v = c * e - b * f;
if u == 0
if v == 0
disp(’Lines coincide.’);

else
disp(’Lines are parallel.’);

end
else
x = v / u;
y = (a * f - d * c) / u;
disp([x y]);

end

CHAPTER 4
4.2 (a) log(x + x ^ 2 + a ^ 2)

(b) (exp(3 * t) + t ˆ 2 * sin(4 * t)) * (cos(3 * t)) ˆ 2
(c) 4 * atan(1)
(d) sec(x)ˆ2 + cot(x)
(e) atan(a / x)

4.3 m = input(’Enter length in meters: ’);
inches = m * 39.37;
feet = fix(inches / 12);
inches = rem(inches, 12);
yards = fix(feet / 3);
feet = rem(feet, 3);
disp([yards feet inches]);

400 APPENDIX D: Solutions to Selected Exercises

4.5 a = 10;
x = 1;
k = input(’How many terms do you want? ’);
for n = 1 : k
x = a * x / n;
if rem(n, 10) == 0

disp([n x]);
end

end
4.6 secs = input(’Enter seconds: ’);

mins = fix(secs / 60);
secs = rem(secs, 60);
hours = fix(mins / 60);
mins = rem(mins, 60);
disp([hours mins secs]);

CHAPTER 5
5.2 (a) 1 1 0

(b) 0 1 0
(c) 1 0 1
(d) 0 1 1
(e) 1 1 1
(f) 0 0 0
(g) 0 2
(h) 0 0 1

5.3 neg = sum(x < 0);
pos = sum(x > 0);
zero = sum(x == 0);

5.7 units = [200 500 700 1000 1500];
cost = 10 * (units > 500) + 25 * (units > 1000) + 5;
cost = cost + 0.02 * (units <= 500) .* units;
cost = cost + 0.05 * (units > 500 & units <= 1000) .*

(units - 500);
cost = cost + 0.1 * (units > 1000) .* (units - 1000);

CHAPTER 6
6.6 function x = mygauss(a, b)

n = length(a);

a(:,n+1) = b;

for k = 1:n
a(k,:) = a(k,:)/a(k,k); % pivot element must be 1

Solutions to Selected Exercises 401

for i = 1:n
if i ~= k

a(i,:) = a(i,:) - a(i,k) * a(k,:);
end

end

end

% solution is in column n+1 of a:
x = a(:,n+1);

CHAPTER 7
7.1 function pretty(n, ch)

line = char(double(ch)*ones(1,n));
disp(line)

7.2 function newquot(fn)
x = 1;
h = 1;
for i = 1 : 10
df = (feval(fn, x + h) - feval(fn, x)) / h;
disp([h, df]);
h = h / 10;

end
7.3 function y = double(x)

y = x * 2;
7.4 function [xout, yout] = swop(x, y)

xout = y;
yout = x;

7.6 % Script file
for i = 0 : 0.1 : 4
disp([i, phi(i)]);

end

% Function file phi.m
function y = phi(x)
a = 0.4361836;
b = -0.1201676;
c = 0.937298;
r = exp(-0.5 * x * x) / sqrt(2 * pi);
t = 1 / (1 + 0.3326 * x);
y = 0.5 - r * (a * t + b * t * t + c * t ^ 3);

7.8 function y = f(n)
if n > 1

402 APPENDIX D: Solutions to Selected Exercises

y = f(n - 1) + f(n - 2);

else

y = 1;

end

CHAPTER 8

8.1 balance = 1000;

for years = 1 : 10

for months = 1 : 12

balance = balance * 1.01;

end

disp([years balance]);

end

8.2 (a) terms = 100;

pi = 0;

sign = 1;

for n = 1 : terms

pi = pi + sign * 4 / (2 * n - 1);

sign = sign * (-1);

end

(b) terms = 100;

pi = 0;

for n = 1 : terms

pi = pi + 8 / ((4 * n - 3) * (4 * n - 1));

end

8.3 a = 1;

n = 6;

for i = 1 : 10

n = 2 * n;

a = sqrt(2 - sqrt(4 - a * a));

l = n * a / 2;

u = l / sqrt(1 - a * a / 2);

p = (u + l) / 2;

e = (u - l) / 2;

disp([n, p, e]);

end

8.5 x = 0.1;

for i = 1 : 7

e = (1 + x) ^ (1 / x);

disp([x, e]);

x = x / 10;

end

Solutions to Selected Exercises 403

8.6 n = 6;
T = 1;
i = 0;
for t = 0:0.1:1
i = i + 1;
F(i) = 0;
for k = 0 : n
F(i) = F(i) + 1 / (2 * k + 1) * sin((2 * k + 1) *

pi * t / T);
end
F(i) = F(i) * 4 / pi;

end
t = 0:0.1:1;
disp([t’ F’])
plot(t, F)

8.8 sum = 0;
terms = 0;
while (sum + terms) <= 100
terms = terms + 1;
sum = sum + terms;

end
disp([terms, sum]);

8.10 m = 44;
n = 28;
while m ~= n
while m > n
m = m - n;

end
while n > m
n = n - m;

end
end
disp(m);

CHAPTER 9
9.1 t = 1790:2000;

P = 197273000 ./ (1+exp(-0.03134*(t-1913.25)));
plot(t, P), hold, xlabel(’Year’), ylabel(’Population size’)
census = [3929 5308 7240 9638 12866 17069 23192 31443 38558

...
50156 62948 75995 91972 105711 122775
131669 150697];

census = 1000 * census;
plot(1790:10:1950, census, ’o’), hold off

404 APPENDIX D: Solutions to Selected Exercises

9.2 a = 2;
q = 1.25;
th = 0:pi/40:5*pi;
subplot(2,2,1)
plot(a*th.*cos(th), a*th.*sin(th)), ...

title(’(a) Archimedes’) % or use polar
subplot(2,2,2)
plot(a/2*q.^th.*cos(th), a/2*q.^th.*sin(th)), ...

title(’(b) Logarithmic’) % or use polar
9.4 n=1:1000;

d = 137.51;
th = pi*d*n/180;
r = sqrt(n);
plot(r.*cos(th), r.*sin(th), ’o’)

9.6 y(1) = 0.2;
r = 3.738;
for k = 1:600
y(k+1) = r*y(k)*(1 - y(k));

end
plot(y, ’.w’)

CHAPTER 11
11.1 x = 2;

h = 10;
for i = 1 : 20

h = h / 10;
dx = ((x + h) ^ 2 - x * x) / h;
disp([h, dx]);

end

CHAPTER 13
13.1 heads = rand(1, 50) < 0.5;

tails = ~heads;
heads = heads * double(’H’);
tails = tails * double(’T’);
coins = char(heads + tails)

13.2 bingo = 1 : 99;
for i = 1 : 99
temp = bingo(i);
swop = floor(rand * 99 + 1);
bingo(i) = bingo(swop);
bingo(swop) = temp;

end

Solutions to Selected Exercises 405

for i = 1 : 10 : 81
disp(bingo(i : i + 9))

end
disp(bingo(91 : 99))

13.4 circle = 0;
square = 1000;
for i = 1 : square

x = 2 * rand - 1;
y = 2 * rand - 1;
if (x * x + y * y) < 1
circle = circle + 1;

end
end
disp(circle / square * 4);

CHAPTER 14

14.1 (a) Real roots at 1.856 and −1.697; complex roots at −0.0791±1.780i

(b) 0.589, 3.096, 6.285, . . . (roots get closer to multiples of π)
(c) 1, 2, 5
(d) 1.303
(e) −3.997, 4.988, 2.241, 1.768

14.2 Successive bisections: 1.5, 1.25, 1.375, 1.4375, and 1.40625 (exact an-
swer: 1.414214 . . . , so the last bisection is within the required error)

14.3 22 (exact answer: 21.3333)
14.4 After 30 years, exact answer: 2 117 (1000 ert)
14.6 The differential equations to be solved are

dS/dt = −r1S,

dY/dt = r1S − r2Y.

The exact solution after 8 hours is S = 6.450×1025 and Y = 2.312×1026.
14.8 function s = simp(f, a, b, h)

x1 = a + 2 * h : 2 * h : b {\minuscda} 2 * h;
sum1 = sum(feval(f, x1));
x2 = a + h : 2 * h : b {\minuscda} h;
sum2 = sum(feval(f, x2));
s = h / 3 * (feval(f, a) + feval(f, b) +

2 * sum1 + 4 * sum2);
With 10 intervals (n = 5), luminous efficiency is 14.512725%. With 20
intervals, it is 14.512667%. These results justify the use of 10 intervals
in any further computations. This is a standard way to test the accuracy
of a numerical method: halve the step-length and see how much the
solution changes.

406 APPENDIX D: Solutions to Selected Exercises

14.9 % Command Window
beta = 1;
ep = 0.5;
[t, x] = ode45(@vdpol, [0 20], [0; 1], [], beta, ep);
plot(x(:,1), x(:,2))

% Function file vdpol.m
function f = vdpol(t, x, b, ep)
f = zeros(2,1);
f(1) = x(2);
f(2) = ep * (1 - x(1)^2) * x(2) - b^2 * x(1);

Index

Symbols
\, 44, 153
%, 42
@

function handle creation, 171
&, 115
’, 116, 130
.’, 116
.*, 46
./, 46
.\, 46
.ˆ, 46
:, 9, 130
;, 7, 48
˜, 115
|, 115
π , 8, 193

estimation of, 294
3-D plot, 206

A
abs, 72, 100
acos, 100
acosh, 100
air resistance, 271
algebra, 360
algorithm, 83
all, 119, 137

example, 120
AND, 115
angle, 72
animation, 222

comet3, 207
ans, 33, 47
any, 119

example, 120
apostrophe, 130

argument
input, 93
input, pass by reference, 169
input, pass by value, 169

arithmetic operator, 44
array, 9, 32

2-D, 127
cell, 251
multi-dimensional, 142

Array Editor, 33
array operation, 46, 138
asin, 100
asinh, 100
aspect ratio, 72
assignment, 7
assignment statement, 48
atan, 100
atan2, 72, 100
atanh, 100
axis, 200

equal, 72
normal, 72

axis limits, 200
azimuth, 214

B
bacteria division, 288
bacteria growth, 294, 309
bar graph, 245
base workspace, 167
best fit, 155
binomial coefficient, 181
Bisection method, 301
bit, 33
bitwise logical operations, 115
break, 184, 190
breakpoint, 175

Bubble Sort, 246
bug, 257
byte, 33

C
calculus, 360
calendar, 8
camel caps, 32
cantilever beam, 265
cartesian co-ordinates, 204
case, 71
case sensitivity, 32
ceil, 100
cell, 251, 252
cell array, 251
celldisp, 254
cellplot, 254
chaos, 224, 234, 314

butterfly, 317
trajectory, 317

cla, 203
clc, 8
clear, 33
clear M-file, 168
clf, 203
clipboard, 25
clock, 61, 100
colon operator, 9, 35, 130
colon operator, initialization, 35
colon operator, precedence, 45
color, 200
colorbar, 227
colormap, 225
comet3, 207
command, 49
command line, 6
command line editing, 6
Command Window, 5 407

408 Index

command/function duality, 173
comment, 42
compiler, 28
complex conjugate transpose, 72
complex numbers, 71
condition estimator, 155
conj, 72
Contents.m, 167
context menu, 28
continuation of statement, 42, 48
continue, 190, 191
contour, 209
contour plot, 22
contour3, 210
cos, 101
cosh, 101
cot, 101
Crank-Nicolson method, 319
csc, 101
cumsum, 101
current directory, 27
curve fitting, 325
cut and paste, 25

D
data types, 43
date, 8, 101
deal, 251
Debugger, 174
debugging, 257
degrees to radians, 8
del2, 228
delimiter highlighting, 51
demo, 12
det, 145
determinate repetition, 181
diag, 138
diary, 39
dice, 114
diff, 307
differential equation, 308, 360
differentiation, 360
disp, 52
display

scale factor, 55
division

matrix, 156
dot product, 47
dot-transpose operator, 116
double, 44
double precision, 43

doubling time of an investment, 186
drawnow, 224

E
editing a plot, 220
eig, 145
eigenvalue, 148
eigenvector, 149
electrical circuit, 265
element-by-element operation, 46
ellipse, equation of, 234
ellipsis, 42, 48
elseif, 67
empty, 35
empty array, 120
end, 132
eps, 111
error

fatal, 257
logical, 258
rounding, 259
run-time, 174
syntax, 257

etime, 61
Euler’s method, 308
exclusive OR, 115
exist, 119
exp, 101
explicit list, initializing vectors, 34
expm, 145, 313
exponent, 43
exponential

matrix, 313
exponential fit, 155
exponential growth, 309
exporting ASCII data

save, 104
exporting binary data

save, 105
expression, 42–44, 47

ans, 47
display suppressed, 48
logical, 64, 115

eye, 135

F
factorial, 57
false, 109
fast Fourier transform, 329
feval, 171
Fibonacci numbers, 180
field, 249

fieldnames, 250
figure, 10, 203
figure window, 10, 202
find, 119
findobj, 218
finite difference scheme, 311, 318
fix, 101
fixed point, 43, 54
fliplr, 138
flipud, 138
floating-point, 43, 54
floor, 59, 101
for, 58

command line version, 60
index, 59
iteration count, 59
more general, 60
most general form, 139
nested, 140, 184
replaced by vectorization, 60
used for determinate loop, 192

format, 54
formula

vectorization, 50
Fourier series, 194, 329
fplot, 205
fractal, 235
free fall problem, 265
frequency distribution, 245
full matrix, 157
full, 159
function, 49, 166

handle for passing as argument,
171

help, 166
MATLAB Function Reference, 99
name resolution, 173
P-code file, 170
private, 170
subfunction, 170

function functions, 172
function M-file, 163
function/command duality, 173
fzero, 303

G
Gauss reduction, 161
Gaussian random number, 293
gca, 215
gcf, 215
gco, 216
get, 216

Index 409

Gibbs phenomenon, 194
ginput, 203
global, 167
gradient, 211, 212
graph, 9

easy-to-use commands, 198
graphics

2-D, 197
3-D, 206
3-D rotation, 213
axis limits, 200
contour plot, 209
cropping a surface, 211
editing, 220
editing a plot, 220
line type, 200
logarithmic plot, 203
mesh surface, 207
multiple plots, 199, 202
plotting symbol, 200
polar co-ordinates, 204
rapidly changing functions, 205
saving, 230
vector field, 211

grid, 199
gtext, 198, 244
guessing game, 184

H
H1 line, 167
Halley’s comet, 234
handle

function, 171
graphics object, 214

Handle Graphics objects, 214
Harmonic analysis, 329
help

for a function, 166
Help Navigator, 99
helpwin, 99
hexadecimal, 54
hidden name, 173, 258
histogram, 245
hold, 199

I
i, 71
identity matrix, 135
if, 63, 64

command line version, 63
elseif, 67

nested, 70
vectorized with logical vector, 121

if-else, 66
command line, 66

ill conditioning, 155, 161
imag, 72
importing ASCII data

load, 105
importing binary data

load, 106
inclusive OR, 115
indeterminate repetition, 181, 184
index of for, 59
Inf, 7
infinity, 7
initialization, colon operator, 35
initialization, explicit list, 34
inline object, 92
input argument, 93
integration, 360
interpolation, 305
interpreter, 28
inv, 145
isempty, 120
isglobal, 167
isinf, 120
isnan, 120
isothermal, 210
iteration count, 59

J
j, 71

K
Knuth, 188

L
least squares, 155
left division, 44, 153, 156
Legendre polynomial, 180
length, 101
Leslie matrix, 147
lighting, 229
limit of sequence, 58
line numbers, 174
line style, 200
linear equations

over-determined, 154
residual, 153
solution, 152
under-determined, 155

linspace, 36

list
sorting, 246

load, 105, 106
LODE, 313
log, 101
log10, 102
logarithmic plot, 203
logarithmic spiral, 232
logical error, 258
logical expression, 63, 64, 109, 115

vector, 110
logical function, 119
logical operator, 68, 115

precedence, 115
logical vector, 110

subscripting with, 118
loglog, 204
logspace, 36
lookfor, 167
loop

determinate, 181
indeterminate, 184

Lorenz, 314
Lotka-Volterra model, 317
lu, 145

M
M-file, 27

function, 163
function passed as argument, 171

magic square, 22, 136
mantissa, 43, 54
marker, 200
Markov chain, 149
MATLAB functions, 92
matrix, 34, 38, 127

array operation, 138
creating, 129
deleting rows and columns, 134
duplicating rows and columns, 133
enlarging, 129
full, 157
Leslie, 147
multiplication, 143
plot, 197
sparse, 157
subscript, 129
transpose, 38, 130
visualization, 212

matrix division, 156
matrix exponential, 313
matrix exponentiation, 145

410 Index

matrix multiplication, 143
matrix operation, 46, 143
max, 102, 249
mean, 102
mechanical system, 341
menu, 191
mesh, 208
mesh surface, 207
meshc, 210
meshgrid, 207
Mexican hat, 22
min, 102, 249
mlock, 168
Monte Carlo estimation of π , 294
more, 53, 189
multi-dimensional array, 142
multiple lines in Command Window,

26
multiple plots, 202
multiple plots on same axes, 199
munlock, 168

N
name hiding, 173, 258
NaN, 7
nargin, 169
nargout, 169
nested fors, 140, 184
nested ifs, 70
Newton quotient, 179, 260, 306
Newton’s method, 56, 163
Newton’s method in general, 299
normally distributed random

number, 293
NOT, 115
not-a-number, 7
num2str, 53
number, 43
numerical differentiation, 306
numerical integration, 304
numerical method, 299

Bisection method, 301
differential equation, 308
differentiation, 306
Euler’s method, 308
integration, 304
Newton quotient, 306
Newton’s method, 299
partial differential equation, 318
predictor-corrector, 312
Runge-Kutta method, 313
Simpson’s rule, 305

solution of equations, 299
Trapezoidal rule, 304

numerical solution of differential
equations, 308

numerical solution of equations, 299

O
object, 254

Handle Graphics, 214
object-oriented programming, 254
ones, 135
operand, 44
operation

array, 46
element-by-element, 46
matrix, 143

operator
arithmetic, 44
colon, 130
dot-transpose, 116
left division, 153
logical, 68, 115
precedence, 44, 116
relational, 64
transpose, 116

operator precedence, complete list,
116, 385

OR, 115
exclusive, 115

oscillator, 341
output, 52

paging, 53
suppressed with semicolon, 48

output argument, 165
over-determined system, 154

P
P-code file, 170
paging, 189
paging output, 53
partial differential equation, 318
pascal, 136
pause, 214
pcode, 170
persistent variable, 167
pi, 8
plot, 197

3-D version, 206
logarithmic scale, 203
polar co-ordinates, 204

plot edit mode, 220
plot3, 206

plotedit, 220
plotyy, 199
Poisson process, 290
polar, 204
polar co-ordinates, 204
polynomial fitting, 325
pow2, 102
pre-allocation, 239
precedence, 116

arithmetic operators, 44
colon operator, 45
logical operator, 115
transpose, 46

precedence of operators, complete
list, 116, 385

predator-prey model, 317
predictor-corrector method, 312
prime number

largest known, 188
test, 187

private function, 170
prod, 102
Profiler, 171
program, 24
projectile problem, 265
projectile trajectory, 188
Property Editor, 206
pseudo-code, 39
pseudo-random number, 102

Q
gr, 145
quad, 306
quadrature, 306
quiver, 211
quote in string, 53

R
radio-active decay, 296
RAM, 28
rand, 102, 113, 135, 285

seeding, 286
uniform, 285

randn, 293
random access memory, 28
random number, 37, 113

generation, 285
normal, 293
uniform, 285

random numbers
counting, 113

Index 411

random walk, 150, 245, 288
rat, 54
real, 72
realmax, 43, 102
realmin, 43, 102
recall

smart, 7
recursion, 176
redimensioning, 240
reference, pass by, 169
relational operator, 64
relative accuracy, 43
rem, 102
removing element of vector, 119
removing elements of an array, 37
repmat, 133
reshape, 133
reshaping a matrix, 132
residual, 153
right division, 156
rmfield, 251
rolling dice, 114, 287
root of an equation, 299
roots, 303
rot90, 138
rounding error, 259, 306
run-time error, 174
Runge-Kutta method, 313

S
save, 104, 105
saving a file, 26
saving a graph, 230
scalar, 9
scalar expansion, 47
scalar product, 47
scientific notation, 43

display, 54
scope, 167
script, 27

recommended way to run, 28
script file, 27
seeding rand, 286
semi-colon, 7
semilogx, 204
semilogy, 203
sensitivity analysis, 161
separator, 49
series for π , 193
set, 217
Simpson’s rule, 305

simulation, 114, 245
bacteria division, 288
bacteria growth, 294
estimation of π , 294
game of eights, 295
radio-active decay, 296
random walk, 288
rolling a dice, 287
spinning coins, 286
traffic flow, 290

single-precision, 44
size, 33
smart indenting, 59
smart recall, 7
sort, 246, 248
sort

bubble, 246
sound, 183
sparse matrix, 157
sparse, 158, 159, 320
sparse matrix, 320
spinning coins, 286
spiral

Archimedes, 232
logarithmic, 232

spring, mass damper model, 341
sprintf, 244
spy, 159, 213
sqrt, 8
stable age distribution, 149
statement, 7, 48, 49

assignment, 48
continuation, 48

string, 53
containing quote, 53

struct, 250
structure, 249
structure plan, 26, 39
subfunction, 170
subplot, 202
subscript, 37, 129

logical vectors, 118
vector, 118

subscript out of range, 129
subscripting with logical vectors, 118
sunflower head, 233
surf, 209
surfc, 210
svd, 145
switch, 71
symbolic mathematical, 359
syntax error, 257

T
tab completion, 11
Taylor series

exponential, 179
terminal speed, 272
text, 199
tic, 61
tiling, 134
title, 199
toc, 61
top down programming, 40
traffic flow, 290
transpose, 37, 38, 130

complex conjugate, 72
transpose operator, 116
transpose operator, highest

precedence, 46
Trapezoidal rule, 304
tridiagonal matrix, 320
trigonometry, 360
tril, 138
triu, 138
true, 109
truecolor, 228
truncation error, 325
type, 27

U
under-determined system, 155
uniformly distributed random

number, 285
update process, 237

V
value, pass by, 169
Van der Pol’s equation, 327
varargin, 170, 253
varargout, 253
variable, 7, 28, 31

global, 167
persistent, 167
scope, 167
termed arrays by MATLAB, 32

vector, 9, 34
colon operator, 35
explicit list, 34
incompatible sizes, 257
pre-allocation, 239
redimensioning, 240
removing element, 119
scalar product, 47

412 Index

subscript, 37, 118
transpose, 37

vectorization, 50
instead of for, 60

view, 213
visualization of matrix, 212

W
while, 185

command line form, 185
used for indeterminate loop, 192

vector condition, 185
who, 33
whos, 33
why, 24
workspace, 32

base, 167
function, 167

Workspace Browser, 33

X
xlabel, 199

xor, 115

Y
ylabel, 199

Z
zero of a function, 299
zeros, 135
zlabel, 206
zoom, 325

	Cover
	Essential MATLABfor Engineers and Scientists
	Copyright
	Preface
	 Acknowledgments

	Part 1 Essentials
	1 Introduction
	1.1 Using MATLAB
	1.1.1 Arithmetic
	1.1.2 Variables
	1.1.3 Mathematical functions
	1.1.4 Functions and commands
	1.1.5 Vectors
	1.1.6 Linear equations
	1.1.7 Tutorials and demos

	1.2 The desktop
	1.2.1 Using the Editor and running a script
	1.2.2 Help, Publish and View
	1.2.3 Symbolics in live scripts
	1.2.4 APPS
	1.2.5 Additional features

	1.3 Sample program
	1.3.1 Cut and paste
	1.3.2 Saving a program: Script ﬁles
	 Current directory
	 Running a script from the Current Folder browser

	1.3.3 A program in action

	 Summary
	 Exercises
	1.A Supplementary material

	2 MATLAB Fundamentals
	2.1 Variables
	2.1.1 Case sensitivity

	2.2 The workspace
	2.2.1 Adding commonly used constants to the workspace

	2.3 Arrays: Vectors and matrices
	2.3.1 Initializing vectors: Explicit lists
	2.3.2 Initializing vectors: The colon operator
	2.3.3 The linspace and logspace functions
	2.3.4 Transposing vectors
	2.3.5 Subscripts
	2.3.6 Matrices
	2.3.7 Capturing output
	2.3.8 Structure plan

	2.4 Vertical motion under gravity
	2.5 Operators, expressions, and statements
	2.5.1 Numbers
	2.5.2 Data types
	2.5.3 Arithmetic operators
	2.5.4 Operator precedence
	2.5.5 The colon operator
	2.5.6 The transpose operator
	2.5.7 Arithmetic operations on arrays
	2.5.8 Expressions
	2.5.9 Statements
	2.5.10 Statements, commands, and functions
	2.5.11 Formula vectorization

	2.6 Output
	2.6.1 The disp statement
	2.6.2 The format command
	2.6.3 Scale factors

	2.7 Repeating with for
	2.7.1 Square roots with Newton's method
	2.7.2 Factorials!
	2.7.3 Limit of a sequence
	2.7.4 The basic for construct
	2.7.5 for in a single line
	2.7.6 More general for
	2.7.7 Avoid for loops by vectorizing!

	2.8 Decisions
	2.8.1 The one-line if statement
	2.8.2 The if-else construct
	2.8.3 The one-line if-else statement
	2.8.4 elseif
	2.8.5 Logical operators
	2.8.6 Multiple ifs versus elseif
	2.8.7 Nested ifs
	2.8.8 Vectorizing ifs?
	2.8.9 The switch statement

	2.9 Complex numbers
	 Summary
	 Exercises
	2.A Supplementary material

	3 Program Design and Algorithm Development
	3.1 The program design process
	3.1.1 The projectile problem

	3.2 Programming MATLAB functions
	3.2.1 Inline objects: Harmonic oscillators
	3.2.2 MATLAB function: y = f(x)

	 Summary
	 Exercises

	4 MATLAB Functions and Data Import-Export Utilities
	4.1 Common functions
	4.2 Importing and exporting data
	4.2.1 The load and save commands
	4.2.2 Exporting text (ASCII) data
	4.2.3 Importing text (ASCII) data
	4.2.4 Exporting binary data
	4.2.5 Importing binary data

	 Summary
	 Exercises

	5 Logical Vectors
	5.1 Examples
	5.1.1 Discontinuous graphs
	5.1.2 Avoiding division by zero
	5.1.3 Avoiding inﬁnity
	5.1.4 Counting random numbers
	5.1.5 Rolling dice

	5.2 Logical operators
	5.2.1 Operator precedence
	5.2.2 Danger
	5.2.3 Logical operators and vectors

	5.3 Subscripting with logical vectors
	5.4 Logical functions
	5.4.1 Using any and all

	5.5 Logical vectors instead of elseif ladders
	 Summary
	 Exercises
	5.A Supplementary material

	6 Matrices and Arrays
	6.1 Matrices
	6.1.1 A concrete example
	6.1.2 Creating matrices
	6.1.3 Subscripts
	6.1.4 Transpose
	6.1.5 The colon operator
	6.1.6 Duplicating rows and columns: Tiling
	6.1.7 Deleting rows and columns
	6.1.8 Elementary matrices
	6.1.9 Specialized matrices
	6.1.10 Using MATLAB functions with matrices
	6.1.11 Manipulating matrices
	6.1.12 Array (element-by-element) operations on matrices
	6.1.13 Matrices and for
	6.1.14 Visualization of matrices
	6.1.15 Vectorizing nested fors: loan repayment tables
	6.1.16 Multi-dimensional arrays

	6.2 Matrix operations
	6.2.1 Matrix multiplication
	6.2.2 Matrix exponentiation

	6.3 Other matrix functions
	6.4 Population growth: Leslie matrices
	6.5 Markov processes
	6.5.1 A random walk

	6.6 Linear equations
	6.6.1 MATLAB's solution
	6.6.2 The residual
	6.6.3 Over-determined systems
	6.6.4 Under-determined systems
	6.6.5 Ill conditioning
	6.6.6 Matrix division

	6.7 Sparse matrices
	 Summary
	 Exercises

	7 Function M-ﬁles
	7.1 Example: Newton's method again
	7.2 Basic rules
	7.2.1 Subfunctions
	7.2.2 Private functions
	7.2.3 P-code ﬁles
	7.2.4 Improving M-ﬁle performance with the Proﬁler

	7.3 Function handles
	7.4 Command/function duality
	7.5 Function name resolution
	7.6 Debugging M-ﬁles
	7.6.1 Debugging a script
	7.6.2 Debugging a function

	7.7 Recursion
	 Summary
	 Exercises
	7.A Supplementary material

	8 Loops
	8.1 Determinate repetition with for
	8.1.1 Binomial coefﬁcient
	8.1.2 Update processes
	8.1.3 Nested fors

	8.2 Indeterminate repetition with while
	8.2.1 A guessing game
	8.2.2 The while statement
	8.2.3 Doubling time of an investment
	8.2.4 Prime numbers
	8.2.5 Projectile trajectory
	8.2.6 break and continue
	8.2.7 Menus

	 Summary
	 Exercises

	9 MATLAB Graphics
	9.1 Basic 2-D graphs
	9.1.1 Labels
	9.1.2 Multiple plots on the same axes
	9.1.3 Line styles, markers and color
	9.1.4 Axis limits
	 axes and axis?

	9.1.5 Multiple plots in a ﬁgure: subplot
	9.1.6 ﬁgure, clf and cla
	9.1.7 Graphical input
	9.1.8 Logarithmic plots
	9.1.9 Polar plots
	9.1.10 Plotting rapidly changing mathematical functions: fplot
	9.1.11 The Property Editor

	9.2 3-D plots
	9.2.1 plot3
	9.2.2 Animated 3-D plots with comet3
	9.2.3 Mesh surfaces
	9.2.4 Contour plots
	9.2.5 Cropping a surface with NaNs
	9.2.6 Visualizing vector ﬁelds
	9.2.7 Visualization of matrices
	9.2.8 Rotation of 3-D graphs

	9.3 Handle Graphics
	9.3.1 Getting handles
	9.3.2 Graphics object properties and how to change them
	9.3.3 A vector of handles
	9.3.4 Graphics object creation functions
	9.3.5 Parenting
	9.3.6 Positioning ﬁgures

	9.4 Editing plots
	9.4.1 Plot edit mode
	9.4.2 Property Editor

	9.5 Animation
	9.5.1 Animation with Handle Graphics

	9.6 Color etc.
	9.6.1 Colormaps
	9.6.2 Color of surface plots
	9.6.3 Truecolor

	9.7 Lighting and camera
	9.8 Saving, printing and exporting graphs
	9.8.1 Saving and opening ﬁgure ﬁles
	9.8.2 Printing a graph
	9.8.3 Exporting a graph

	 Summary
	 Exercises

	10 Vectors as Arrays and Other Data Structures
	10.1 Update processes
	10.1.1 Unit time steps
	10.1.2 Non-unit time steps
	10.1.3 Using a function
	10.1.4 Exact solution

	10.2 Frequencies, bar charts and histograms
	10.2.1 A random walk
	10.2.2 Histograms

	10.3 Sorting
	10.3.1 Bubble Sort
	10.3.2 MATLAB's sort

	10.4 Structures
	10.5 Cell arrays
	10.5.1 Assigning data to cell arrays
	10.5.2 Accessing data in cell arrays
	10.5.3 Using cell arrays
	10.5.4 Displaying and visualizing cell arrays

	10.6 Classes and objects
	 Summary

	11 Errors and Pitfalls
	11.1 Syntax errors
	11.1.1 Incompatible vector sizes
	11.1.2 Name hiding

	11.2 Logic errors
	11.3 Rounding error
	 Summary
	 Chapter exercises

	Part 2 Applications
	12 Dynamical Systems
	12.1 Cantilever beam
	12.2 Electric current
	12.3 Free fall
	12.4 Projectile with friction
	 Summary
	 Exercises

	13 Simulation
	13.1 Random number generation
	13.1.1 Seeding rand

	13.2 Spinning coins
	13.3 Rolling dice
	13.4 Bacteria division
	13.5 A random walk
	13.6 Trafﬁc ﬂow
	13.7 Normal (Gaussian) random numbers
	 Summary
	 Exercises

	14 Introduction to Numerical Methods
	14.1 Equations
	14.1.1 Newton's method
	14.1.1.1 Complex roots

	14.1.2 The Bisection method
	14.1.3 fzero
	14.1.4 roots

	14.2 Integration
	14.2.1 The Trapezoidal rule
	14.2.2 Simpson's rule
	14.2.3 quad

	14.3 Numerical differentiation
	14.3.1 diff

	14.4 First-order differential equations
	14.4.1 Euler's method
	14.4.2 Example: Bacteria growth
	14.4.3 Alternative subscript notation
	14.4.4 A predictor-corrector method

	14.5 Linear ordinary differential equations (LODEs)
	14.6 Runge-Kutta methods
	14.6.1 A single differential equation
	14.6.2 Systems of differential equations: Chaos
	14.6.3 Passing additional parameters to an ODE solver

	14.7 A partial differential equation
	14.7.1 Heat conduction

	14.8 Complex variables and conformal mapping
	 Joukowski airfoil

	14.9 Other numerical methods
	 Summary
	 Exercises

	15 Signal Processing
	15.1 Harmonic analysis
	15.2 Fast Fourier Transform (FFT)

	16 SIMULINK Toolbox
	16.1 Mass-spring-damper dynamic system
	16.2 Bouncing ball dynamic system
	16.3 The van der Pol oscillator
	16.4 The Dufﬁng oscillator
	 Exercises

	17 Symbolics Toolbox
	17.1 Algebra
	17.1.1 Polynomials
	17.1.2 Vectors
	17.1.3 Matrices

	17.2 Calculus
	17.3 Laplace and Z transforms
	17.4 Generalized functions*
	17.5 Differential equations
	17.6 Implementation of funtool, MuPAD and help
	17.6.1 The funtool
	17.6.2 The MuPAD notebook* and Symbolic help

	 Exercises

	APPENDIXA Syntax: Quick Reference
	A.1 Expressions
	A.2 Function M-ﬁles
	A.3 Graphics
	A.4 if and switch
	A.5 for and while
	A.6 Input/output
	A.7 load/save
	A.8 Vectors and matrices

	APPENDIXB Operators
	APPENDIXC Command and Function: Quick Reference
	C.1 General-purpose commands
	C.1.1 Managing variables and the workspace
	C.1.2 Files and the operating system
	C.1.3 Controlling the Command Window
	C.1.4 Starting and quitting MATLAB

	C.2 Logical functions
	C.3 MATLAB programming tools
	C.3.1 Interactive input

	C.4 Matrices
	C.4.1 Special variables and constants
	C.4.2 Time and date
	C.4.3 Matrix manipulation
	C.4.4 Specialized matrices

	C.5 Mathematical functions
	C.6 Matrix functions
	C.7 Data analysis
	C.8 Polynomial functions
	C.9 Function functions
	C.10 Sparse matrix functions
	C.11 Character string functions
	C.12 File I/O functions
	C.13 2D graphics
	C.14 3D graphics
	C.15 General

	APPENDIXD Solutions to Selected Exercises
	 Chapter 1
	 Chapter 2
	 Chapter 3
	 Chapter 4
	 Chapter 5
	 Chapter 6
	 Chapter 7
	 Chapter 8
	 Chapter 9
	 Chapter 11
	 Chapter 13
	 Chapter 14

	Index
	Back Cover

